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Abstract

For a largescale data-inensve ernvironmen,

suchasthe World-Wide Web or datawarehos-
ing, we oftenmake local copiesof remotedata
sources. Due to limited network and compu

tationalresourceshowever, it is oftendifficult

to monitor the sourcesconstatly to checkfor

changsandto downloadchanged dataitemsto

the copes. In this scenarip our goalis to de-
tectasmary chargesaswe canusingthefixed
download resoucesthat we have. In this pa-
perwe proposethreesamplingbaseddovnload
policies that can identify more changd data
items effectively. In our samplingbasedap-
proad, we first samplea small nunmber of data
itemsfrom eachdatasourceanddownloadmore
dataitemsfrom the sourcewith morechange

samples. We analyzethe effectivenessof the
samplingbasedpolicies and compare our pro-

posedpolicies to existing ones,includng the
state-of-tle-artfrequengy/-basedolicy in [7, 9].

Our experimentson syntheticand real-world

datawill shav the relative merits of various
policiesandthegreatpotentialof oursampling

basedpolicy. In certaincases,our sampling

basedpolicy codd download twice as mary
chan@ditemsasthebestexisting policy.

1 Introduction

Many applicatiors often make local copiesof remote
datasoures. For instance a datawarehaisemay copy

remotesalesand transactiorrecord for local analysis.

Similarly, a Web searchengire copes a subsetof the

Web andindexesthemto help usersaccessNeb pages.

In mary casestheremde sourcesareupdatedindepen-
dently of the local copies, so we mustperiodcally poll
and downlaad datafrom the sourcesto detectcharges
andincorporatethemto the copies.

Chang detectim and download is often perfamed
in batchat a regular interval, typically during off-peak
houss, to avoide interfelencewith the main tasksthat
the sourcesand/orclients perform. As the size of the
datagrows, however, detectingchangesaindincorporat-
ing themto thecopiesbecomencreasinty difficult. Due
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to limited network andcomputationalresourcs, we may

not be ableto checkevery dataitem in the datasources
within thelimited time window, sowe may misscertain

changsatthesources.

In this paper we addesssomeof the challengsthat
arisein this context: How canwe detectand download
asmary changddataitemsaswe can,whenthe source
datais updatedndepewlentlyandwhenwe have limited
resouces?In this scenarigit is importart exactly what
itemwe decideto downloadandcheck becasewe may
wastea significantportionof ourresourcs, if we repet-
edly downloadunchangedtems.

As we will discusgn moredetaillater, our mainidea
is to usesampling Thatis, we first download a small
numter of dataitemsfrom eachdatasoure assamples
andusethe samplego decidewhich sourcesve down-
loadmoredataitemsfrom. While theideais simple,our
later analysisand experimentswill shawv thatsampling
basedyolicieshave greatpotentialandleadto significant
improvemen.

Although the prodem of changedetectioranddown-
load arisesin various contexts, our work is mainly mo-
tivatedby our needto manae Web data. In our Web-
Archive prgect[19], we try to storemultiple versiors of
Web pagesover time, so that userscanaccesshe Web
of, say 10 yearsago. Due to our limited network re-
sourceshowever, we cannd corstantlydownload every
pageto checkfor changs, sowe needto careflly select
whatpage to downloadandcheck A similar serviceis
currerly provided by the WayBad Machine [18]. Web
searchengires also have to address the sameprablem,
becausehey have to periodcally revisit Web pagesin
orderto maintaintheir indexes up-to-date. This taskis
typically perfamedby a progam,calleda Webcrawler.

Recently Choetal. [7] andCoffmanetal. [9] stud-
ied how a crawler candetectmore chargesby predct-
ing page charge frequeries Thatis, the cravler con-
stantlyestimatedow oftena pagechangsbasedon the
pastchangehistory of the page and usesthis estimate
to decidehow often it will revisit the pagein the fu-
ture. Differertly from the existingwork, this pape stud-
ieshow we candetectmorechangsusingsampling As
ourlaterexpeaimentswill shav, oursamplingbasedbol-
icy leadsto significantimprovemen from thefrequeng-
basedpolicy in mary cases. In an experimenton real



Web data, our samplingbasedpolicy detectedwice as
mary changs asthe frequeng/-basedpolicy in certain
cases!

In order to designandimplemen a goad sampling
basedpolicy, thereare mary questiongo addess. For
exampe, how mary sampleshoulda cravler take from
eachdatasource?Cana crawler dynamically adjustthe
samplesize to improve effectiveness? How shoulda
crawler usethe resultsfrom samplig? Canwe com-
bineasamplingbasedolicy with thechang-frequeng-
basedpolicy? To addressthesequestios, we organize
therestof the paperasfollows:

e In Section2, we presenta framework to studythe
chang detectionand download prodem. We dis-
cussvarious chan@-detectia policiesandpresent
evaluatian metricsto compae differentpolicies.

e In the first half of Section 3, we propse two
samplingbasedpolicies, propational and greedy
andanalyzetheir effectiveness.We derive the opti-
mal samplesizethatmaximzesthe effectivenessof
asamplingbasedolicy.

e In the secondhalf of Section3, we propose an
adaptve-samplingpolicy that candynanically ad-
justthe samplesize,basedon the chang@sdetected
sofar. We alsostudythe scenariovherewe canrot
sampleenowgh pagesrom eachdatasourcedueto
ourvery limited downloadresouces.

e Finally in Section4, we experimentally compae
our samplingbasedpolicy to others,including the
state-of-tle-artfrequeng-basedoolicy. Our exper-
imentswill shav thatour samplingpolicy is often
significantly betterthan existing ones. The expe-
imentswill alsorevealthe respectie meritsof our
samplingbasedolicy andthefrequeng/-basegol-
icy. To the bestof our knowvledge,our work is the
first oneto studythe effectivenessof thefrequeng-
basedpolicy experimentallyon real data The re-
sults will shedlight on how we may use various
policiesin anactualsystem.

2 Framework

In this pape, we assumehatthesourcesareupdatedau-
tonomauslyandindeendentlyof thelocal copy. Thatis,
weassumea pull modewhetrethelocal copy needgo pe-
riodically checkthe datasource to detectanddownloal
chan@s.Thismodelis in contrasto apushmodelwhere
thedatasourcesarecooperativeandwilling to pushtheir
upddesto the local copies. Recently Olstonet al.[16
startedinvestigatingthe pushmodé, but we believe the
pull mocel is more suitablefor mary existing apgica-
tions,including the World-Wide Weh

We also assumehat the local copy downloadsdata
items periodicdly in batch, say every weelend. That
is, every weelend we download a fixed nunber of data
itemsfrom the sourcesandupdatethe local copy using
thedownloadeditems. We call thisintenal — in thiscase
oneweek—asadownloal cycle Ourgoalis to download
as mary changd items as possiblein eachdownload

cycle, using the samefixed download resouces. This
assumptioris valid for an environmen like the World-
Wide Web, wherewe maintaina large numter of data
itemsresidingin mary differentsourcesandwe do not
have enoudp resource to updatethemall in a shortpe-
riod of time. Thefollowing exanpleillustratesatypical
scenaridhatwe assume.

Example1 We maintainlocal copiesof 10 million Web
pagesdownloadedfrom 10,0® sites. The 10000 sites
do not inform us of ary changs, so we needto peri-
odically download pagesto detectand save changsin
ourcopies.Sincemary usershearily accesgshesepages
during weekdgs, we candownload the pagesonly on
weelends. Givenour network bandwidh we candown-
load up to onemillion pagesevely weelend We want
to useour limited downloadresouceseffectively sothat
we candownloadasmary changecagesaspossiblein
eachweek. o

2.1 Download policies

Whenwe candownload only a subsetof dataitemsin
eachdownload cycle, we needto carefully decice what
dataitem to download. Thereexist a multitudeof ways
for this decision,ncludingthefollowing:

1. Rourd-robin: We download dataitemsin a round-
robin fashionin eachdownload cycle. In caseof
Exampe 1, for instance,we download the first 1
million pagesdn thefirst week,thesecondl million
pagesn thesecondveek,etc. Becauseve maintain
10million pageslocally, every pagewill beupdatel
exactly onceevery 10weeksin this policy.

2. Chang-frequencybased:Basednthepastchang
history of a dataitem, we estimatehow often the
item chan@s and decidehow often to revisit the
item. For instancejf we have downloadedanitem
onceevery monthfor oneyear andif we detected
4 changs, we may estimatethat the item chamges
onceevery 4 morths and revisit the item accord
ingly. For moredetaileddescriptia of this policy,
seereferenceq?, 9].

3. Sampliny-based: We first samplea small numker
of dataitems from eachdatasource(e.g.,a Web
site) and estimatehow mary itemsin that source
have changd. Wethenallocatedownloadresouices
to eachdatasourceaccordngly, basedon the es-
timates. For instance,in caseof Examplel, we
may download 10 pagesfrom eachof the 10000
Web sitesassampleqatotal of 100,00 pagesam-
ples)andcourt how mary pagesn thesampledhave
changd. (For now, we assumehatwe needto ac-
tually download a pageto seewhetherthe pagehas
changdor not.) Thenbasednthecourts, we allo-
catethe remairing 900,000 download resoucesto
eachWeb site accordngly. Laterin Section3, we
will discusghis policy in more detail.

The above three policies have their own merits and
adwartages. The roundrohin policy is currerily beirg



usedby mary systemg5, 13] dueto its simplicity. It
alsoguarareesthat every dataitem is downloadedat a
reguar intenal. Thefrequeng-basedoolicy hasthefol-
lowing advartagesanddisadantags:

e Advantage: Thefrequancy-basedpolicy is proven
to be optimal whenwe canestimatethe changdre-
guerciesof dataitemsaccuratby [7].

e Disadvantage: 1) It is very difficult to estimatethe
chang frequeng of a dataitem accuately. Unless
we have a long charge history of a dataitem, ex-
isting estimationmethod often leadto unrelialde
predictians[8], whichin turnleadto anundesirale
download policy. In addition,the chang frequency
itself maychang over time, but we maynotrealize
thatit hascharged.

2) In orderto estimatethe chang frequencies,we

needto keeptrack of the charge history of every

dataitem. Whenwe maintaina large numkter of

items, this tracking may incur significant storage
andmaintermnceoverhead

A samplingbasedolicy doesnothavethedravbacks
mentioredabove, becaseit makesa downloaddecision
purely basedon the samplegakenin the currentdown-
loadcycle. It doesnotneedto keeptrackof theprevious
chang historyof dataitems. Laterin Sectior4, we will
comparethe effectivenessof the frequeng/-basedpolicy
andthe samplingbasedbolicy usingrealWebdata.

At this point, someof the readersmay expect that
a sampling-lased policy would work only when the
changs of the dataitemsin the samesourceare cor-
related However, we emphaizethatthisis notthecase.
If we cantake random samplesrom eachdatasoure,
we areguaranteedthat the fraction of changd itemsin
the samplesis proportional — in a praobabilistic sense-
to thefractionof change itemsin thedatasource Soa
samplingbasedpolicy doesnot assumeary correlatio
betweernchamesof dataitems. We shouldonly be able
to take randomsampledrom eachdatasource

We alsonotethatit is possibleto combiretwo or more
policiesto achiese desirableproperties.For exampe, we
mayusehalf of ourdownloadresoucesin aroundrohin
fashionandusethe remainirg half for asamplingbased
policy. Thisway, we candetectmorechamesthanasim-
ple rourd-robin policy, while downloadingeveryitem at
leastat a certaininterval. Our studywill helpusemplgy
a conbined policy better through betterunderstandig
of the samplingbasedolicy.

2.2 Evaluation metrics

In order to compae vaiious download policies,we need
an evaluation metric. We list threepoteriial evaluation
metricsin this subsection:

1. ChangRatiometric: Informally, the ChangRatio
metric courts how mary changd itemswe down-
load in a download cycle and usesthis numkber as
its perfaoman@. More precisely the ChangRatio
metricis definedasthe numter of dowvnloadedand
changd itemsin a download cycle over the total

numter of downloadeditemsin the cycle. For ex-
ample,if we downloadedl million itemsandde-
tected700,M0 changd items, the ChangRdio is
0.7. Sincethe ChangRatiomay vary in different
download cycles,we take its averageover multiple
downloadcycles.Ourgoalis to maximizethe aver-
agedChargeRatia

Notethatin certaincasedataitemsmay have dif-

ferent “importance;, and we may want to detect
morechargesfrom more “importart” items. To for-

malizethis notion we mayexterd thesimpledefini-

tion of ChangRatio by assigningveightw; to each
itemo; anddefine

ChangRatio= Y " w; - 1(0:)
i€ER

Here,1(0;) is anindicatorfunction whosevalueis 1
whentheitemo; haschangedndO whenit hasnot.
R is the set of itemsthat have beendownloaded
wi'sarenormalizedsothatZieR w; = 1. Whenall
w;'s areequal,this definitionredicesto the simple
definition

TheChangRadio metricis particulaty usefulwhen
we wantto storethe change history of dataitems,
suchasfor the WebArchve project[19]. Because
our god is to store as completechangehistory
as possible,we want to maximizethe numbe of

detectedchangs. A similar definition was used
in [11].

. FreshnesandAge metrics:In [7], we praposedwo

othermetrics,calledfreshnesandage. Thefresh-
nessof itemo; attimet is definedas

. _ | 1 if o;isup-todateattimet
Foit) = { 0 othemise.

(Up-to-datemeansthat the locally storedimageof
theitemis the sameastheimageat the soure) and
thefreshnes®f theentirelocal copy attimet is

FU;t) = ﬁ Z F(o;;t).

0; €U

Here, U is the setof all locally storeditems. In-
formally, the freshnas metric representsthe frac-
tion of dataitemsthat are up-to-date. For exam
ple, if we maintan 100 pagesandif 70 page are
up-to-dateat ¢, its freshnesss 0.7. Our goalis to
maximizethetime-aveagedfreshressuncerourre-
sourceconstraints.

The secondmetric, the ageof itemo; attime t, is
definedas

0 if o; is up-todateattimet
t — modficationtime of o;
otherwise

A(Oi; t) =



andthe ageof theentirelocal copy is

1
A(U;t) = Il Z A(os; t).
o0, €U

Theagerepresets “how old” thelocal copy is. For
exampe, if the sourcedataitem chan@d one day
ago,andif we have not downloadedtheitem since
then,theageof our localitem is oneday Our goall
is to minimize the time-aveaged ageusinglimited
resoures. Similarly to the ChangRatiometric,we
can incorporate different “importance” of objects,
by assigningweight w;’s to items and taking an
weightedaverage

Thefresmessandagemetricsaresuitablewhenwe

needto keepthe local items as up-to-date as pos-
sible. However, note that the metricsare hardto

measurexactlyin practice.Thatis, in orderto esti-
matefreshnesgor age) we needto instantaneously
compae thesourceatemsto thelocaloneswhichis

oftenvery difficult whenwe maintaina large num

ber of dataitems. In addition we wantto opti-

mize the time-aveaged freshressand agevalues,
but the time average canbe obtainedonly whenwe

know the entire chang history of every dataitem.

Therebre, mostof the studieson freshnessaindage
are condiuctedthrough theoetical analysis, assum-
ing somestochastianodelsfor datachangs.

3. Divergencemetric: In [16], Olstonetal. proposed
avery gereral“staleness’metriccalleddivergenc.
Intuitively, a divergencevalue representshow dif-
ferenta local dataitem is from the souce item.
For example in a stock-narket-manitoring appli-
cation— wherewe locally copy stock prices— we
may definethe divergenceof a stock quae asthe
differencebetweerits curren priceandthelocally-
storedvalue. In gereral, a divergencemetric can
be definedas ary mondonically-increasingfunc-
tion [16].

In this papey we mainly usethe ChangRdio asour
evaluation metric. We madethis choice becausel) it
is easyto measurdn practiceon real dataand 2) high
ChangRatioindirectly implies high freshnas,low age,
andlessdivergene.

3 Sampling-based policies

In this section, we discusssamplingbaseddownload
policiesin more detail. We startour discussiorby clari-
fying our costmodé for sampling

3.1 Sampling cost model

A samplingbasedpolicy needsto samplea few data
items from eachdatasourcein orderto estimatehow
mary itemsin the sourcehave changed During sam-
pling, we assumethat we needto download an entire
dataitemto checkwhetherthe item haschangdor not.
Thatis, we assumeéhatthe costfor samplinganitemis
the sameasthe costfor actuallydownloaling the item.

For exampe, if we candownload 100000dataitemsin

eachdownload cycle andif we sampleatotal of 10000
dataitems, we can download 90000 more dataitems
in that cycle. We also assumehat we do not needto
download a sampleditem againin the samedownload
cycle, becagethe item wasalreadydownloadedduring

sampling Thisassumptiomakesour discussiorsimple,
andit is straightfoward to extendour currert modelto

the casewheresamplingcostis lower thandownloadirg

cost.Forinstanceif samplimg costis only 10% of actual
downloadingcost,we mayassumehatwe candownload
99, 000 (= 100,000 — 0.1 - 10,000) moredataitemsfor
theabove scenario

3.2 Greedy and proportional policies

We now discusgwo samplingbasedolicies,greedyand
proportioral. To make our discussiorconcrete we use
thefollowing asour runring exampge.

Example 2 We locally mirror two Web sites A and B.
EachWeb site has 100 pages. We can download 100
pagesveryweelerd. To estimatéhow mary pagehave
changd, we samplel0 pagedrom eachsite. Out of the
10 samplesy pageschangedn A and2 pageschange
in B. We needto decidehow to allocatethe remaining
80 (= 100 — 2 - 10) pagedownloadresoucesto A and
B. We assumehatevery pageis equallyimportant. o

Given the sampling results, we may allocate the
downloadresoucesto A and B eitherproportionally or
greedly.

1. Proportioral policy: We allocatethe remainirg re-
sourcesto a site proportionally to its numbe of
changdsamplesThatis, we download80 - -7 =

+2 T
62 pagesrom site A and80 - 35 = 18 pagesfrom
site B.

2. Greedypolicy: We startfrom the site that hasthe
most changd samplesand download all pages in
the site. If we still have remainirg download re-
sourceswe dowvnloadmore pagesfrom thesecond
mostchan@d site. We contirue this processuntil
we run outof downloadresouices.In theabove ex-
ample we useall 80 remainng resoucesfor site 4,
becaused hasmorechangd sampleghanB.

In bothpolicies,we allocatemoredownloadresouices
to the siteswith morechangd sampleshopirg thatwe
will detectmore changs. While both policiesarerea-
sonable we can seethat the greed policy is expectal
to yield betterChangRatiothanthe proportional policy
from thefollowing simpleanalysis.

Prolabilistically, % = 70% of the pagesin site A
would have changd and li = 20% of B pageswould
have charmged. Therebre, the proportioral policy is ex-
pectedto detect0.7 - 62 + 0.2 - 18 = 47 changsfrom
pagedownloads.Including the9 (= 7 + 2) pagechamges
detectedduring sampling we detect56 changsin total
(i.e., the ChangRatio is 56/100 = 0.56). In contrast,
thegreedypolicy is expectedto detect).7 - 80 + 9 = 65
changesin total (ChargeRatioof 0.65).
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Figure 1: ExpectedChargeRatio for variols sample
sizes

In geneal, it is straightfoward to prove that the ex-
pectedChangRadio of the greedypolicy is the highest
amory all samplingbasedolicies.

Theorem 1 (Optimality of Greedy Policy) We sample
thesamenumter of randam pagesfromead datasource
and allocate remainirg downloa resouces basedon
the samplingresults. In this scenario,the greedypol-
icy is expectedo givethehighestChangRatioout of all
samplingbasedpolicies. o

Proof SeeApperdix. n

The above theoremshaws that the greed policy
yields betterChangRatio on averaye than the propor-
tional policy. However, the grealy policy may have
larger variation in its performane, becauséahe gree
policy aggessvely allocatesall of its resoucesto the
site with moreestimatecchangs. Whenthe estimation
is correct,this choiceyieldsvery high ChangRatio, but
whenthe estimationis incorrect, it alsoyields very low
ChangRatia In contiast,the proportional policy down-
loadspagesrom everysite,soevenwhenthe estimation
is inaccuratejt still shavs relatively high performane.
Laterin Section4, we will investigae this issueexpei-
mentally

3.3 Optimal samplesize

In a samplingbasedpolicy, the size of samplesaffects
perfamancesignificantly In this section,we studythe
optimalsamplesizethatyieldsthe highestChangRatio
In orderto uncerstandthe impact of samplesize, let
us considr a scenariosimilar to Exampe 2, but now
assumethat we sample50 pagesfrom eachsite (in-
steadof 10). In this case,we useall of our 100 down-
loadresoucesjust for sampling sowe cannotdownload
ary morepagesrom the site with morechangd pages.
Therebre, the perfamanceof a samplingbasedpolicy
would be similar to that of the round-rdoin policy, be-
causewe dowvnload rancbm pages during sampling. At
the otherextreme,if we sampleonly oneor two pages
from eachsite, thereis a high chancethatthe estimated
numter of changesrom sampless inaccuate andwe
make awrongdownloaddecision.

Figurel illustratesthis issuemore precisely We ob-
tainedthe graph assuminghattherearetwo sites,A and
B, with 100 pageseach,and we download 100 pages
in onedownload cycle. We alsoassumedhat 70 pages
changdin site A and20 page changdin site B. The
horizantal axis shavs the samplesizethata policy uses
andthe vettical axisshavs the expectedChangRatioof
the rourd-rolin, greedyandproportional policiesat the
givensamplesize. Thegraphwasobtainedanalytically

Note that the grealy and the propational policies
shav the same expected ChangRatio, 0.45, as the
rourd-robin policy whenthesamplesizeis either0 or 50.
This is becagewhenthe samplesizeis 0, both policies
selecta randan site for download, andwhenthe sam-
ple sizeis 50, bothpoliciesuseall its resouicesjust for
sampling Also notethatthe proportional andthegreed
policiesshav similar perfamancewhensamplesizeis
small(< 2). Thislittle differerceis becasethe greeq
policy is morelikely to make aninaccuatedownloadde-
cisionwith smallsamples.t needgo sample‘enowh”
pagego make a gooddecision.Fromthe gragh, we can
seethatthegreed policy shavstheoptimalperfomance
whenit samplesabou 5 pagedrom eachsite.

In geneal, we canderive the optimd samplesizefor
the greed policy analytically. To help deriation, we
firstintroducesomenotation

Weassumeéhatall Websiteshave thesamenumker of
Webpages/N. In practice differentWebsitesmayhave
differentnurbersof pagesput in this case we mayin-
terpretV astheaverage numberof pagesin overall sites.
We user to repesentheratioof ourdownloadresouices
to thetotal nunberof page thatwe maintain.For exam
ple, if we maintain200 pagesandif we candownload
100 pagesin eachdownload cycle, r is 0.5. We usep;
to repesenthefractionof changdpagein site S;. For
instancejf site S; has100 pagesandif 70 pageshave
changd, p1 = 0.7. Whensiteshave differentp; values,
we canplot thehistogramof p; values asin Figure2 and
apprximate it by a continuas density funcion f(p).
Thegoalof thegreed policy is to download pagesonly
from the siteswhosep; valuesarethe highest100 - %
(say the grayregion in thefigure). We usep, to repte-
sentthethresholdp value: The siteswhorep valuesare
highe thanp, belongto thetop 100 - »% sites.We usep
torepresentheaveragep values overall sites.Weusep
to repesentthe averagep valuesof the sitesin the gray
region (thesiteswhasep valuesareabove p;). In Tablel,
we summarizeour notation. Someof the notatian in the
tablewill beintrodwedlater

Unde this notation,we can expect that the optimal
samplesizewill dependon thedistribution f(p), ourre-
sourceconstraims, andthe nunber of pagesin the Web
sites. The following theoem shavs how theseparane-
tersaffect theoptimalsamplesize.

Theorem 2 (Optimal sample size) Theoptimd sample
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[ Notation | Meaning |

N Averagenumbe of pagesin all sites

R Availate downloadresource

r Ratio of downloadresource to the total nurmber
of pages we maintain

s SampleSize

k Granuarity (samplesize)of adaptve policy

e Confiderce valueof adaptve policy

pi Fractionof chargedpagesn site S;

flp) Densityfundion of all websites’ p values

Dt Threstold p value. If p; > p; for someS;, thenS;
belorgsto the highest100 - r% sites

p Averagep valuesover all websites

pr Averagep valueof websiteshaving p; > p:

Tablel: Notationusedthroudhoutthe pape.

size s, uncer thegreedypolicy is approximately

o | N E(Pe) .
6(ﬁ7‘ - ,5)

Proof Due to its length and complity, we give the
prod in theapperlix. n

Intuitively, we canunderstandheresultof Theaem?2 as
follows: First, whenr is large (i.e., whenwe have rel-
atively large download resoucescompaed to the num:
ber of pagesthat we maintain)we canusemore of our
resoucesfor sampling becase we canstill download
mary pagesfrom high p sitesusing the remainng re-
sources.SecondwhenN is large (i.e., whenWeb sites
have more pages)we needto samplemore pagesfrom
thesitesto predct their p valuesbetter

Another factor p,. — p, indicatesthatwe cansample
lesspages whenp, — p is high (i.e., whenthe p values
of thetop 100 - r% Web sitesaremuchhighe thanthe
avera@ p value) Thisis becasewhenthe p valuesare
very different amory the sites, the estimatedp; values
from sampleswill beverydifferent,soit becaneseasier
to identify the high p sitesfrom the others.

Thefinal factor f (p;) indicatesthatwe needto sam-
ple more pages whenthe value of the densityfunction
f(p) is highat p;. Thisis becasewhenmary Websites
have p valuescloseto p; (i.e., when f(p;) is large) it
is more difficult to tell exactly which siteshave p values
higha/lowerthanp;.

Usingtheformulain Theaem2, we canestimatehe
optimalsamplesizewhenwe know the distribution of p
values. In certaincaseshowever, the distribution may
be unknown, andwe may not compute the optimal sam-
ple sizeaccur#ely. Evenin this scenaripwe believe the
resultof Theoem2 is still useful,becausét shavs that
the optimal samplesize s is propational to the square
rootof Nr. As arule of thumb therebre, whenwe do
not know the exactdistribution of p valueswe mayuse
V' Nr asa rouch appraimation for the optimal sample
size. Clearly, otherfactorsare important to determire
the exact optimal size, but this apprximation will be
rouchly in the samerangeasthe optimd size, different
only by a constantfactor Laterin the experimentsec-
tion, we will verify the resultof this sectionusingreal
Webdata.

3.4 Adaptive sampling

The policiesthatwe have discussedofar aretwo-stage
policies. Thatis, we first take a fixednumkber of samples
from eachsite at a samplingstage, andthenwe down-
load more pagesrom high p sitesat a downlad stege.
Insteadof a two-stagepolicy, we now discussan adap
tive samplingpolicy thattries to adjustthe samplesize
dynanically andadaptiely.

Our new adapive policy is essentiallypasedon the
greed policy: After samplingsomepagesfrom each
site, if we are certainthat the p value of a siteis very
high, we downloadall pagesfrom the site. The differ-
enceis thatthe samplesizeis notdetermind in advarce
unde theadaptie policy.

To illustrate, let us assumethat we maintain local
copiesof 4 Web sites, S; throwgh S4. Their p values
arep; = 0,p, = 0.45, p3 = 0.55, py = 1, andeachsite
has100pages.We candownloadatotal of 200 pagesn
eachdownloadcycle. Roughy, ourgoalis to identify the
two Web siteswith high p valuesthatwe will download
pagedrom.

Giventhe high p valueof the site S4, we canexpect
thatthe sampledrom S, will have muchmorecharges
thanthe othersamples.Therebre, it is relatively safeto
pick S4 for pagedownloadearlyin our sampling.Simi-
larly, it is safeto discardS, earlyon,becageof its low p
value.Comparedo S; andSy, S» andSs require larger
samplesbecagetheir p valuesaresimilar andit is diffi-
cultto tell which onehasa higherp value.Basedonthis
intuition, we proposethe policy describedn Figure3.

The algorithm takes two input paraneters, o and
k, whoseintuition is given later RougHy, the algo-
rithm proeedsasfollows: It samplesk pagedrom each
Web site, and basedon the samplest estimateshe p;
valueandits 100 - % confiderce interval for eachsite
(Stepd3] through[6]). Giventhedistribution of the es-
timatedp; values, it can predictthe thresholdp; value
(Step[7]). For exampe, if we candownload abait half
of the sitesin eachdawnload cycle, andif half of the
estimated;’sareabove 0.6, p; = 0.6.

After estimatingp,, it compaesthe conficenceinter-
vals of p; to thethreshdd. If the confiderceinterval for



Algorithm 3.1 Adaptive-sampling policy
Parameters:
a: confidercelevel (avaluebetweerD and1)
k: nurrberof pagego samplen eachiteration
Procedure
[1] S={51,S2,...Sn} /I Setof sitesto besampled
[2] Loopwhile we have downloadresource
[3] ForeachsiteS; € S
[4] Samplek pagefrom S;
[5] p; = Estimateof p valuefor S; baseonthesamplesofar
[6] (1, h;) =100 - a% confidereinterva for p;
[7] Compuethreshdd p; from thedistribution of estimated;’'s
[8] ForeachwebsiteS;inS
[9] If (h; < pt) S=S-S;
Il p; toolow. We do notdownloadfrom S;
[10]  If (p: < !;) downloadall pagesn S; andS=S- S;
Il p; veryhigh. We downloadpages from S ;

Figure3: Algorithm of theadaptve-samplingpolicy

S; is strictly lower thanthethreshold(h; < p;), it stops
samplingfrom thesite (Step[9]); It hasenowgh eviderce
thatthe p; of S; is belov the threshold Similarly, if the
confidenceintenal of S; is strictly above the threshdd
(p¢ < 1;), it downloadsall pagesrom thesite (Step[10]).
The a andk valuesare configuration parametes set
by the user Whenthe « valueis low, the algorithm
malkes a download/discad decision“aggressrely” and
picksasitefor download (or discard evenwith low con-
fidence.Thus,it allocatedessresourceto samplingand
moreresoucesto page downloads. The k value deter
minesthe grandarity of samplingadjustment. When
k is small, the algaithm re-estimates; valuesmore
frequently and makes a download (or discard)decision
moreoften. Thus,thealgoithm mayshaow betterperfa-
mancebut it may requre moreprocessingower. Later
in Sectiond, we will studytheimpactof a andk values
ontheeffectivenesof the policy. We will try to identify
gooda andk valuesthatyield high perfomance.

3.5 Subset sampling under low download resour ces

Sofar, we have implicitly assumedhatwe have a suffi-

ciently large amount of download resourcesso thatwe
cansampleareasonale nunberof pagesrom eachsite
andstill download morepagesrom high p sites.In cer

tain caseshowever, this assumptiormay not be valid.
We may not be ableto sampleenowgh page from each
site, dueto our limited resoucesavailable. In this sec-
tion, we studyhow we shoud handlelow-resourcesce-
narios.

Geneally, thereis an interestingrelatiorship be-
tweenthe downloadresourcesize andthe perfomance
of a samplingbasedpolicy. At one extreme,whenwe
have few downloadresource andcannotsampleesnaigh
pagedrom eachsite,asamplingbasedolicy would per
form similarly to theroundrohin policy: aftersamplirg
a coupleof pagesfrom eachsite, we canna download
ary more pagesfrom high p sites,andwe endup vis-
iting a small but different portion of the pagesin each
cycle,justlike therourd-rabin policy. (Becausave take
randon sampleswe will visit different pagesin differ-
entcycleswith high prabability.) At the otherextreme,
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Figure4: Compaison of the rourd-rokin policy anda
samplingpolicy for variousresouce constraits

if we have enogh resouresto download every pagein
eachdownload cycle, a samplingbasedpolicy will per
form similarly to the roundrobin policy again,because
bothpolicieswill downloadall pagesn everycycle.

Figure 4 shows a hypottetical graphthat illustrates
this relationship The horizontalaxis shavs theresouce
ratio » (the nunber of download resoucesto the num
ber of total pages we maintain) Whenr is 1, we can
download all pagesin eachdownload cycle, andwhen
r is 0, we can download no page. The vettical axis
shaws the perfomanceratio of a samplingbasedpolicy
to the rourd-roklin policy (ChargeRatioof a sampling
basedpolicy over ChargeRatioof the round-rabin pol-
icy). Whenthe samplingbasedpolicy perfoms better
thanthe roundrobin policy, this ratio is higher than1.
In thegraph a samplingbasedandtheroundrohin poli-
ciesshow similar perfamance(the performanceratio is
1) whenresouceratior is closeto eitherO or 1, because
of the reasongliscussedabove. In betweenthesetwo
extremes, a samplingbasedpolicy shavs betterperfa-
mancethantheroundrobin policy.

To improve perfamancefor the scenarioof very lim-
itedresouces(r ~ 0), we prgposethatasamplingbased
policy shouldselecta small subsetof its datain each
download cycle, and sampleand download pages only
from the subset:

e Subsetsamplingunder low downlad resouces:
When the download resouces are too limited to
sampleenowgh pagesrom eachsite, we growp the
sitesinto m subsets.In eachdownload cycle, we
pick one subsetand sampleand download pages
only from thesitesin thesubsetWe revisit the sub-
setsin a rourd-rodn manne over multiple down-
loadcycles.

For instanceconsidetthe following exampe:

Example 3 We maintain local cachesof Web pages
from 1000 sites. EachWeb site has100 pages. Evely
weelend we candownload 500 pagesin total. In this
scenarioour simple grealy (or adaptve) policy canrot
work effectively, becausave cansamplelessthanone
pagefrom eachsite.

To hande this scenarip we may use the subset-
samplingpolicy. First,we divide thesitesinto groypsof,
say 10 sites. Every week,we selecta growp of 10 sites



andsample say 10 pagedrom eachof the 10 sites. As-
sumingwe usethegreed-policy, we canusetheremain
ing 400 (500 — 10 - 10) downloadresoucesto dowvnload
pagedrom high p sites. o

Whenwe needto usethe subset-samplingolicy, one
important questionis how mary siteswe shouldputin
eachsubsetShouldwe samplel0 sitesin onedownload
cycle,samplingall 1000 sitesover 100cycles?Or shoud
we sample20 sitesin eachcycle? The answerdeperls
ontheamouwnt of availableresoucesandthedistribution
of p valuesamonghesites.Although we canna derive a
closedformulafor theoptimalnumter of sitesto sample,
we believe that the number shouldbe deternined such
that we candownload all page from high p sitesafter
sampling

For exanple, if the p valuesfollow thedistribution of
Figure2, andif rougHy 30% of the sitesbelorg to the
grey region (high p region), we shouldbe ableto down-
load all pagesfrom thesetop 30% sitesin eachdown-
load cycle. If our subsets too smallandif we have to
download pagedrom lower p sites(given our download
resouces),perfamancewould degrade. If our subseis
too large andif we “waste” most of our resourcedor
sampling perfamancewould alsosuffer. Laterin Sec-
tion 4, we experimentallystudythe effectivenessof the
subset-samnimg policy.

3.6 1sGreedytoo greedy?

While the greed (andadaptve) policy canimprove the
overall ChangeRatio, it maybepossiblethatsomepages
are never downloaded, becausethe policy downloads
pagesonly from the high p sites. Thefollowing theoren
provesthatthisis notthecase.

Theorem 3 Wheneverypage changesat somepointsof
time everypageis evertually downloaled. o

Proof SeeApperdix. n

Although the theoremprovesthatevery pagewill even
tually be downloaded,it doesnot guaanteethat pages
aredownloadedwithin a“reasonale” periodof time. It
alsodoesnot addessthe casewhensomeof the pages
doesnot chang atall. In our experiment section,we
will studyhow ofteneachpage is downloadedunder the
greed policy usingreal Web data. We alsonotethat
if it is importantto download every pagewithin a cer
taininterval, we maydecideto comline theroundrobin
policy with the greedy(or othersamplingbased)oolicy.
For exampe, we maywantto use,say 30% of download
resoucesin around-rdoin fashionandusetheremainirg
70% for thegreed policy.

4 Experiments

Following on from our theoetical analysis, we con-
ducteda number of expeaimentsin order to study the
behaior and performane of the aforenentionedpoli-
cies. Most of our experimentswere condictedon real
datacollectedfrom the Weh The datasetcontaired 6-
month charge history of appoximately 353,000 Web
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Figure5: Histogramof p; valuesin the dataset.

pagesdistributed among252 Web sites. The datawas
collectedby our WebArchive crawler, which visited the
Web sitesonceevery morth for a period of 6 morths.
Sincechangs coud be detectedonly from the second
visit (in the first visit, we do not knov whethera page
haschargedor not), we hada total of 5 changehistory
datafor eachpage Thus,our experimentscoud run up
to 5 downloadcycles.

It mayseenthat5 downloadcyclesis relatively small,
but aswe will seein thefollowing sectionst is enaigh
to bring up the poteriial of the samplingpolicies. Also,
when it is necessanto run experimentson a longer
chang history, we assumedhatour 5 cycle datawould
repeatover time. Thatis, if we detectedchangsfrom
a pagein the 2nd and 5th cycles, we assumedhat we
detectchamgesin 7th, 10th, 12th, 15th cycles, etc. Our
datasets publicly availablefrom our Website[19].

We shouldemphasizehat our later experimentsdid
notactuallycrawl anddownload pagesAll experiments
were conductedon the samedatacollectedby our We-
bArchive crawler. This setupenablesa fair comparison
amory policies. Also, throughou experiments,we as-
sumethatthe costfor samplinga pageis the sameasthe
costfor actuallydownloadingit.

4.1 Distribution of p values

We startour discussiorby investigaing the propertiesof
our dataset.In particular we shav the distribution of p
valuesof the sites(Section3.3) in Figure5. The hori-
zontalaxis represets rangesof p values, andthe verti-
cal axis shavs the numter of Web siteswith the given p
value. Label0.1 onthe horizantal axis meanshe range
of 0 to 0.1. Notethatthe p valueof a site mayvary be-
tweendownload cycles. However, we could not detect
ary meanindul fluctuationin p valuesbetweencycles
from our datasetWe plottedthe histogramusingthe av-
erage p value of asiteoverall 5 downloadcycles.

This figure shaws thatin our data,thereexist quite
a few Web sites whose pageschangevery frequantly.
About 18% of the siteshasp valuesbetween0.9 and
1. Also, alot of sitesarestaticandremain(almost)un-
alteredthroudhout our expetiment. More than35% of
the siteshasp valuesbetween0 and0.1 This factintu-
itively suggestshat1) it canberelatively easyto detect
the highandlow p sitesusingsamplingand?2) if we can
identify the Web siteswith very high andlow p values
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and allocateour download resouces appopriately we
mayobsenre a significantimprovemert in the nunberof
detectecchangs.

While ourdataindicateghatthe p valuesof Websites
follow a V-shagddistribution, it will bealsointeresting
how various downloadpoliciesperfom for differert dis-
tributions.  For this reason we also ran someof our
expetimentson a syntheticdatawhosep valuesfollow a
normaldistribution. Theresultsonthesyntheticdataare
repotedin Section4.8

4.2 Rough comparison of download policies

In this section,we condict a rough compaison of vari-
ouspoliciesusingourrealdata.For the expeiments,we
assumedhat eachpolicy candownload R = 100,000
pagesin eachdownload cycle. The greedyand propor-
tional policiesusedsamplesizes = 10 andthe adaptve
policy usedk = 10 (discussedh Section3.4) andacon-
fidencelevel o = 0.9. Notethatwe did nottry to opti-
mize theseparaneters. We selectedhe numkersrather
arbitraily for this expeiment. However, we believe that
theresultsfrom this experimentwould shav therelative
potertial of variows algorithms. In later sectionsawve will
be examining theimpactof the various paranetersmore
thoraughly.

Figure 6 shows the results. The horizantal axis cor
resporls to variows policiesandthe vertical axis showvs
the ChangRatics of the policies(averagedover 5 down-
load cycles). From a first glimpse at this figure, the
readercan obseve that our greedy(Grd) and adaptve
(Adp) policies perform surpisingly well compaed to
theroundrobin (RR) andeven thefrequeng/-basedFrq)
policy. Their ChangRatics arealmosttwice ashigh as
the frequeng/-basedpolicy! Sincetheir ChangRdios
arearownd 0.75, evenif we could designa hypotheti-
cal oracle policy, which could magicdly downloadonly
changd pages,the improvemen would be less than
25%. The performarte of the proportiond (Prp) policy
is similar to that of the frequeng policy, andthe perfa-
mancedifference betweenthe greedyand the adaptve
policy is mamginal.

While the results strongly indicate that the greeq
andthe adapive policiesarevely effective, we notethat
the frequeng/-basedpolicy coud not shaw its full po-
tential in this experiment, due to our small numter of
download cycles. Sincethe frequeng/-basedpolicy did

not know how oftenpageschamge, it visited every page
oncein around-rddin mannerin the beginning, until the
first half of the 4th cycle.! Only after that, the policy
startedto adjustrevisit frequenciesbasedon estimated
chang frequencies. Therebre, in the first three vis-
its, the frequencg/-basedpolicy shavedthe sameperfa-
manceasthe rourd-robin policy andonly from the sec-
ond half of the 4th download cycle, it startedto shawv
someimprovemen.

Becausef thisfact,thecomparisonof thefrequeng-
basedolicy andoursamplingbasedoliciesmaynotbe
fair, but we notethatthis is the situationin ary practical
system. Any systemhasto estimatepage charge fre-
guerciesin order to usethefrequeng/-basedpolicy, soit
will suffer from poor performarce in the beginning. In
contrast, our samplingbasedoliciesperfam well with-
out ary chang history data. Later on, we will compae
thelongtermperfamanceof thefrequeng-basedolicy
andourgreeq policy.

4.3 Optimal samplesize

In this subsectionwe examire the impact of the sam-
ple sizeon the performane of samplingbasedpolicies.
For this purpcse,we ranthe greedyandthe praportioral

policieson our dataset, keepingthe resouce size con-
stantto 100000 page andvarying the samplesizefrom

1 to 400. The outcane of this expeimentis dravn in

Figure7. Thehorizantal axisrepresentshe samplesize
andthe vettical axisshavs the ChangRatio atthegiven

samplesize. Fromthe gragh, we canconfim the trend
thatwe discussedbefae:

e When the samplesize is too small, a sampling
basedpolicy shavs poa perfomance. It often
makesa poordownload decision This degradation
is particulaty noticedle for the greedypolicy.

e Whenthe samplesize becoms too large, perfa-
mancealsodegradesbecaussamplingbasedoli-
cies wastemore resoucesfor samplirg thanthey
ougtt to.

We canseethat the optimal samplesizefor the greeq
policy is arourd 10-50 Thisrange matcheswell with the
predidion of Theoem2. In Section3.3 we arguedthat
v/ Nr is agod rule of thumbfor theoptimal samplesize
whenwe do not know the exactdistribution of p values.
Givenour paraneters(N = 353,000/252 ~ 1,400 and
r = 100,000/353,000 ~ 0.28), this formula predicts
thatthe optimd samplesizeis v/ Nr ~ 20, whichis in
therangethatwe obsene from our experinent.
Fromthe graphwe canseethatfor all samplesizes,
thegreedypolicy shavsbetteraverage ChangRatiothan
theproportiond policy. We expectedhisresultfrom our
discussiorin Section3.2, but we alsodiscussedhatthe
greed policy may have a larger variation in Change-
Ratio than the proportioral policy. To compae their
variatiors, we measuedthe standad deviation (s.t.d.)of

1We had 353,000 pages and we visited 100,000 pages in eah
download cycle. Therefore,we need3% cycles to visit every page
once.
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ChangRatiobetweerdownloadcyclesfor bothpolicies.
Fromthis estimationwe could seethatthe s.t.d. of the
greed policy is larger thanthat of the proportional pol-
icy (e.g.,0.0Z vs. 0.0 for samplesize 1). However,
becausehevariation is verysmall(~ 0.02) comparedto
averag ChangRatio (~ 0.75), we believe thatthe vari-
ationissueis of negligible importarce.

4.4 Resourcesize and subset sampling

We now studythe effed of varying resouce sizeon the
perfamanceof the greed policy. For the experiments,
we ran the greed andthe round-rdbin policies on our
dataset. Thegreed policy usedthe samplesize10 and
we varied the resouce size R from 3,000 to 300000
pages.

Figure8 shaws the resultsfrom this experinent. The
horizantal axis correspondgto the resourcesizeandthe
vertical axis shavs the ChangeRatio at the given re-
sourcesize. The oracle policy is the onethatcanmag-
ically download only the changd pages. We shaw its
perfamancefor compaison purpses. Note that the
ChangRatioof the oraclepolicy goesbelow 1 for R >
100,000. Thisis becausén eachdownload cycle, only
abou 100, 000 pageschangd andif our resouce size
is largerthan100, 000, the oraclepolicy startsto down-
load unchangedpages. For mostof resouce sizes,the
greed policy shavs muchbetterperfamancethanthe
rourd-rabin policy.

The graph confirms our earlier discussion(Sec-
tion 3.5: Whenthe resourcesizeis large the perfa-
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manceof all policies becane similar, becausall poli-
cies download every page. When the resouce size is
toosmall,theperiormarceof thegreeq policy degracks.
This degradationstartsat R < 20, 000.

To study the impact of the subsetsamplingpolicy,
we divided sitesinto small subsetsand sampledpages
only from one subsetin each download cycle when
R < 20,000. The size of eachsubsetwas selectedso
that we can download about18% of the pagesin the
subsetin eachdownload cycle. For exampe, whenwe
have 10, 000 downloadresoures,eachsubsehadabaut
60,000 pages. We selectedl 8% becauseabou 18% of
the sitesin our datasebelorgedto theright peakof the
V-shad distribution (Figure 5). The resultfrom this
expeiimentis shavn in Figure8. From the graph, we
canseethatthe subsesamplingpolicy improvesthe ef-
fectiveressof the gree@ policy whenthe resouce size
is small. For instancewhenR = 5,000 the Change-
Ratioimprovesfrom 0.73 to 0.89 whenwe usedthe sub-
setsamplingpolicy.

45 Long-term performance of the frequency policy

The resultsin Section4.2 shaved thatthe perfomance
of the greed policy is significantly better than the
frequeng/-basedpolicy in a shortterm. In this section,
we study the long-term perfamanceof the frequeng-
basedolicy andcompaeit to the grealy policy.
Towards this goal, we ran the frequeny and the
greed policiesfor longer downloadcycles,by assuming
thattheobseredchang historyof the pagegepeatsfor-



ever. For exanple, if we detectecchamgesfrom a page
in the 2nd and 5th cycles, we assumedhat we detect
changsin 7th, 10th, 12th, 15th cycles, etc. Figure 10
shaws the results. The horizantal axis correspadsto a
downloadcycle,andthevettical axisshovsthe Change-
Ratioatthegiven downloadcycle. Thedashedine is the
resultof the greedypolicy andthe solid line with wide
fluctuationis theresultof the frequeng-basedoolicy.

The wide fluctuationin the frequency-basedpolicy
is mainly becase it periodcally downloadspagesthat
rarelychang. Evenif apagehasneverchangd,we can-
notbe surethatits chargefrequengy is zero,sowe have
to periodcally go andcheckthe pagefor chan@. The
dipsin the graphcorrespondto the pointswhenthe pol-
icy downloadedinfrequently changimg pages.Note that
the interval betweenthesedips increasessteadily over
time. This is becase as we accunulate more chang
historydata,we canbemore confiden thatthepagedoes
notchang, andthusneedto checkthe pagelessoften.

From the graph, we can clearly seethat the perfa-
manceof the frequeng/-basedpolicy improves steadily
over time. Its performane is significanly lowerthanthe
greed policy in the beginning, but from around 10Gh
download cycle, it startsto shav better periormane.
Therebre, in the long run, the frequengy policy canbe
betterthan the greed policy However, keepin mind
that 100 download cyclesis a long periodof time. Be-
causewe downloadedpagesonceevery morth, 100 cy-
clesroughly correspondto 10years!

4.6 Adaptive policy

We now study the impact of the ¥ and a values(in-
trodwcedin Figure 3) on the performane of the adap
tive policy. To studytheirimpact,we ranthe adaptie-
samplingpolicy for various £ anda values. Figures1l
and 12 show the result. Figure 11 shavs the Change-
Ratioof theadaptve policy for variows k values(thehor-
izontalaxis)whena = 0.9. Fromthegraph we cansee
thattheperfomancedecrasesask increases(Theaeare
smallfluctuations, but we believe they areexperimental
variatiors.) This resultis expectedbecausevhenk is
small,we try to re-estimate; valuesaftersmallnumker
of samplesandthusmalke adownloaddecisionrmorefre-
querily with moreaccuratep; values. Fromthe figure,
we can seethat the performarce deceaseis relatively
smalluntil £ = 10.

Figure 12 shavs the ChangeRatio for various « val-
ues (the horizontal axis). From the gragh, we cansee
that the corfidenceintenval doesnot affect the perfa-
manceof the policy significantly We could not detect
ary meanindul differencein ChangRatio for most of
a values. Onething to noteis thatthe performarce for
k = 1is worsethanothers(k = 5,10) whena is small
(a <£0.75). Thisis becasewhena is smallandk = 1,
thepolicy startedo pick (or discard)a sitefor download
afterit tookonly 2 samplesBecausdt selectedasitefor
download (or discard)too aggressively andtoo early; it
often madewrong decisions. In othercasegk = 5 or
10, or « is large), theseearly decisionsdid not happen
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becausehe policy hadto sample5 or more page when
k = 5 ork = 10, or becauset madea download (or
discard)decisionconsevatively whena is large.

Basedontheresults,we believe k = 10 anda =~ 0.9
aregod paranetersto usefor a scenaricsimilar to our
Webdata.

4.7 How greedy is Greedy?

In Section3.6 we argued that the Greedypolicy will
evertually download all the pageswithin a Web site
provided that thosepageswill changeat somepoint of
time. In this experimentwe tried to evaluatehow well
the Greedypolicy perfomsin thisrespecgivenourreal
data.More specificallywe study1) afteri download cy-
cles,whatfraction of changd pagesthe Greedypolicy
manag@s to visit at leastonce? and 2) how often the
Greedypolicy downloadsapagef thepagechangs,say
onceevery five cycles?

To answerthe first question we definea new metric
Faireness(i)asfollows:

no. of chargedandvisitedpagesupto ith cycle
no. of total changd page upto ith cycle

For exanple, if 50 page have changd sincethe begin-
ning, andwe have revisited 30 of themso far, the fair-
nessvalueis 30/50 = 0.6. The intuition behird this
metricis thata goad download policy shouldrevisit all
chan@d pagesat somepoint, andprevent starvationof
revisits to somechangd pages. Measuriny fairnessis
particulaly importantfor the Greedypolicy, becase it
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mayallocateall its resource®nly to the siteswith mary
chang@dpagedueto its greedynature

Using our collection of real web datawe ran the
Greedypolicy usingthe sameparanetersof Sectior4.2,
andplottedits fairnessgraphin Figure13. In this gragh
the horizantal axis is the download cycle andthe verti-
cal axisrepresets the fairnessvalueat the given down-
load cycle. Fromthis grafh we canseethatfairnessis
steadilyincreaingovertime, reachng almost0.8 after5
download cycles. Thatis, only after5 download cycles
the Greedypolicy have mangedto visit 80% of thetotal
changdpagesn ourdataset

Another interestingissueto study is how well the
Greedypolicy allocatesits download resoucesto the
pagesof different chang frequencies. Desirably the
Greedypolicy shouldallocatemore of its resourceso
the pageghatarechangimg moreoften,in anattemptto
detectmorechangs. To studythisissue we groupedthe
pagesin our datasetaccordng to the numkber of times
they have charged during 5 download cycles, and for
eachgroupwe measurethon mary timesthepagesvere
visitedon average duringthefive downloadcycles. This
resultis shovn in Figure14. The hotizontal axis shovs
thenumter of chan@sof a groyp andtheverticalshavs
the aveaige number of revisits for the groyp. Fromthis
plot we canclearly seethatthe Greedypolicy allocates
download resourcesn a propational way amag the
grows,in thesensehatit is visiting more oftenthepages
thatarechangig more often

4.8 Performance under different distributions

Our previous experimentsshavedthatthe Greedypolicy
workswell for therealWebdatathatfollows a V-shape
p valuedistribution. It would beveryinterestinghouwgh,
to examine how variows policies would behae under
different kinds of distributions. Towards this goal, we
createdsyntheic datacontainng the chang history of
300, 000 pages.Thepagesreequallydistributedamory
300 websites,soevery sitehad1,0M® pages. Thep val-
uesof theseweb sitesweredesignedo follow a nomal
distribution with mean0.5 andstandardieviation0.3.
Ourmainideais to comparetheperfomanceof all the
policiessimilarly to Section4.2 usingthe synthdic data.

2By changed herewe meanthe pagesthat have changedat least
onceduringthe 5 download cycles.

Average No. of Refleshes

1 2 3 4 5

. No. of Changes
Figurel4: Average nunber of refreshesover nurrber of

changsfor Greedypolicy.

Aswewill explainin detailshortly, theresultsfromthese
expelimentsconfirmthatthegeneraconclwsionsthatwe

obseredbefaearestill valid for thenormaldistribution:

While the exact numters are different,the Greedyand
Adagive policiesperfam very well, andthe Frequery

policy behaes poaly in the beginning but managsto

reachasimilar periormane to Greedyaftera certainpe-
riod of time.

In Figure 15, we showv the perfamanceof various
policies unde the syntheticdata. For the experiment,
we usedthe sameparaméers describedn Section4.2
and downloadedpages for 5 download cycles. Com-
paredto Figure 6, all of algoithms managd to have a
high ChangRatio value,becauseveragep valueswere
highe in the syntheticdata. Again in this case Greedy
did verywell with anoverall perfomancereachingupto
0.82. The Adaptivepolicy alsoperfamedwell, shaving
similar perfomanceto thatof the Greedy The Proporti-
nal andFrequencypoliciesshaved similar perfomance
to thatof the RourdRobn policy. (Their perfamane is
slightly worsethanthatof RoundRolin, but we believe it
is dueto statisticalvariationsof our experiments.)

Frequery wasnotableto performwell in the expeii-
mentbecage,again it ranonly for five downloadcycles
anddid not have enowgh knowledge of the changehis-
tory. To measuréts long-tem perfamancefor this nev
distribution, we ran a longer expeiment and obseved
that1) Frequerryimprovedits perfomancequicky over
time andshavedsimilar perfamanceto Greedyafter 10
download cycles, but 2) the final perfomanceof Fre-
guercty was abou the sameas Greedyat arowund 0.8
(previously it was betterthan Greedy. We believe this
resultis becausehe aveara@g p valueis high andall of
the policiesshow relatively high ChangeRatio from the
beginning. With highinitial perfamanceFrequencyan
achieve only minor improvemen, so it could reachits
highest perfamancequicky, but the improvementwas
notvery significant.

5 Reated work

Reference [7, 9] study how a crawler should down-
load pagesto maintainits index “up-to-date’. Assum-
ing that the crawler knows the exad charge frequen-
cies of pages,the referemrres presentan optimal algo-
rithm. As we learnel from our expeiments,this changg-
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Figure15: Compaison of various policiesundera nor-

mal distribution N (0.5, 0.3) of p values.

frequeng/-basedalgorithmperfamsrelatively well once
it collectsa large amount of history data. However, his-
tory collectionincurs significantoverhead and until it
collectsenaighdatathealgotithm perfomspooty. Our
samplingbasedoliciesdo not needto trackary chang
history, and it shavs significantimprovementwithout
ary historydata.Referencg11] proppsesanotherdown-
load algoithm basedon linear progammirg. The al-
gorithm shaws pramising results,but becasealgoritim
becones more complex over time, the authos repat
that the algorithm hasto periodcally “reset” and“start
from scratch;"The algoiithm takes (practically)infinite
amount of time to finish aftera certainnunber of down-
loadcycles.In contrast, thecompleity of oursampling
basedalgoiithms staythe sameover time.

A lot of work hasbeendore to maintainthe consis-
teng of replicateddata[3, 1, 10, 14, 15]. Thiswork stud-
iesthetradeof betweerdataconsisteng andread/write
perfamance.In mostof the existing work, however, re-
searcherbave assumea pushmocel, wherethesources
notify the replicateddataof the updats. For examge,
Olstonet al. [16] proposeda new architectue in which
datasourcesannotify cachesof importart changs. In
mary contets, particularlyfor theWeb, this pushmodel
is not apgicable, becase datasourcesften do not in-
form othersof their charges.

Samplirg is apopuar techrnquethathasbeenusedin
multipledisciplinesfor various optimizations[12, 21, 20,
6]. The contibution of this paperis to apply samplirg
technigiesto the contet of charge detectionandstudy
avariay of issuesarisingin this context.

Themulti-armedbardit problemis well known in the
statisticsand Al comnunity. The prodem is to iden-
tify the slot machinewith the highest charce of winning
throwgh exploration and exploitation. The problem is
provento be NP-hard[4], and peope have proposeda
rangeof apprximation algoithms [2]. The setting of
themulti-amedbandt prablemis slightly differert from
ours,becase bandt-problem assumeshatthe usercan
play the bestslot machne infinitely. In contrastwe can
downloadonly alimited numker of pages from eachdata
source,so we needto find the top r% sourcesnot just
the top source This differencemalesthe policiestake
quitedifferentforms.

6 Conclusion and future work

In this paper we studiedhow we can detectchanged

data items effedively using samplirg. We proposed
threesamplirg-basedolicies,greedy propational and
adapive, and evaluatedtheir performane analytically

and experimentally We also compaed the sampling

basedpolicies to other existing policies. Our expei-

mentsshavedthatthe greed policy is easyandsimple
to implemen andshavs oneof the bestperfamancein

mary scenaris. Givenits simplicity and performane,

we believe that the greedypolicy is goodfor practical
systems.ts comgexity is similar to the widely-popuar

rourd-rabin policy, while its perfamanceis closeto (or

even betterthan) the frequancy-basedpolicy. Also, we

learnedhatthefrequeng/-basedpolicy is notvery effec-

tive in certaincasespecauset takesalong time to es-
timatethe chang frequenciesof page. We now briefly

discussafew avenuesf future work.

e If we want to maximize perfamance we may
wantto combine a sampling-fsedpolicy with the
chang-frequeng-basedpolicy. Thatis, we start
with a samplingbasedpolicy in the beginning, and
once we collect enowh chang history data, we
start using the frequeng-basedpolicy. Whenwe
shouldstartthis transitior? Whatcanwe do if the
chang frequeng itself maychang over time?

e In this paper we assumedhat we samplea few
pagedrom eachWeb site or eachdatasouice But
thereis noinheentreasorto sampleat the level of
a site. Whatif we samplea few pagesfrom each
directory? Whatif we group Web pagesbasedon
their contents and samplea few page from each
growp? Would we getbetterperfaomance
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A Rough sketch of the proofs for various
theorems

Theorem 1 We samplethe samenumler of randan
pages from eadh data source and allocate remainirng
downlad resoucesbasedon the samplingresults. In
this scenario,the greedypolicy is expectedto give the
highest ChangeRati@ut of all samplingbasedpolicies.

]

Proof We usec; to repesentthe nurber of change
itemsin thesamplesrom sourceS;. Without losinggen-
erality, we assumer; is thehighestandc, is thesecond
highestandsoon. We assumé¢hatwe download R ; items
from souce S; andthetotal of R itemsfrom all sources
(i.e., >, Ri = R). We assumeeachdatasourcehas N
dataitems.

Whenwe take randon samplesaanddetectc; change
items from s samples,we expect 100 - %% itemsin
S; have changed Therebre, we expectto detect % R;
changsfrom S; whenwe download R; itemsfrom S;.
Thenthetotal numker of detectedthargesis expectal to
be ¢

' ;Ri, wherez R,=R

2 K3
Ourgoalis to maximizetheabore value.Fromtheequa-
tion, it is easyto seethat the formula takes its maxi-
mum value whenwe assignN to R; for low ¢ values
(t =1,2,...), because; values arethe highestfor low
i's. Thatis, we haveto startdownloadingdataitemsfrom
the sourceswith themostchargedsamples. n

Theorem 2 The optimd sample size s, under the
greedypolicyis approximaely

s~ | Nrf(pt) .
G(ﬁr_ﬁ)

Proof To help our derivation, we first assumean ora-
cle greedypolicy, which canmagicdly identify the sites
with high p valuesandcandirectly downloadpagesfrom
thosesiteswithout any samplig. We useP,(p;) to de-
notethe prokability thatthe oraclegreed policy down-
loadsa site S; whenits p valueis p;. By the definition
of theoraclegreed policy, P,(p) = 1 whenp > p, and
P,(p) = 0 whenp < p;. We shav thegraphof P,(p) as
adashedine in Figure 16.

We usethe P, (p;) to reptesentheprobaility thatour
greeqd policy downloadsa site S; whenits p valueis
pi. We shaw its graph asa solid line in Figure16. Be-
causethe grealy policy sometimesmakeswrong deci-
sions,the graphP,(p) is nota stepfunction like P,(p).
It appro@hes0 asp decreaseshut whenp is closeto
pt, Py(p) is largerthanO even if p < p, becasesome
of thesitesaremistalenly downloaded.Similarly, P, (p)
apprachesl asp increasesbut whenp is closeto py,
P,(p) is smallerthanl evenif p > p;. Asweincrease

Probability

Figurel6: Probaliity P,(p) andP,(p)

thesamplesizes, thegraphof P, (p) will beconesimilar
to thatof P,(p), becauséhe greed policy makesmore
accuratedownload decisionwith largersamples.

We now appoximatethe fundion P,(p) by a piece-
wiselinearfunction P, (p) shavn asadottedline in Fig-
ure 16. The geneal form of P,(p) canbe represents
as

0 for p € [0, pt — 4]
Pu(p) =13 s5(p—pi)+35 forpe (p:—6,p+9)
1 for p € [pt + 9,1]
@D

andwe needcomputed to find theapprximation Based
ontheresultof Lemmal (whichis given later),we will
usel/+/s astheapprximated value.

We now compute the expected perfamanceof the
greeq policy. Underthe greedypolicy, we download s
samplepagesfrom every site. Therebre, the expectel
numter of changs that we detectduring samplingis
M sp, whereM is thetotal nunberof sitesthatwe main-
tain andp is the averagep valuefor overall sites. Once
thegreedypolicy decicesto downloadmore pagesrom
site S;, the expectednumbe of chargesthatwe detect
from S; is (N — s)p;. (Remembe that we download
N — s more pagesfrom S;, becase we do not down-
load the sampledpages again) Becausehe site S; is
downloadedwith theprobability P, (p;) uncerthegreey
policy, thetotal numberof changsthatwe expectto de-

tectduring actualdownloadis fol Py(p)(N —s)pf(p)dp.
Therebre, the total nurmber of chargesthat we detect
bothfrom samplirg andfrom actualdownloadis

1
=3) [ Py(oof(p)dp-+ My

~ (N —s) /0 Po(p)pf(p)dp + Msp

Assumingf(p) ~ f(p¢) for p € (pr — 6, p¢ + 6), and
usingtheanalyticalform of P,(p) in Equation1, we can



computetheabove integral, andtheresultis

(N—-s)M (% +ﬁr) + Msp
Our goalis to find the s valuethat maximzesthe above
formula. It is straightfawardto show thatthe above for-
mulatakesits maximumwhen

oo | Nrfed)
\ 605 — ») .

Lemmal Theé valuefor Equdion 1 can be approxi-
matedas1//s. o

Proof From Figure 16, we seethatd is a valuewhere
P,(p;+6) becomesloseto 1. For this proof, we assume
thatwe pick the§ value suchthat

P,(p; +8) = 0.95 )

We now try to apprximate P, (p;), the prabability
that we download more pagesfrom site S; whenits p
valueis p;.

Thesite S; is downloadedwhenits estimateg; value
(dended as j;) is greaterthan p,. Thatis, P,(p;) =
Pr{p; > pt}. To estimatethe p; value, we use X/s,
where X is the number of changd pagesin the sam-
ple ands is the samplesize. Thatis, p; = X/s. Be-
causewe take s randbm sampledrom S; where100p;%
of the pages chamged, the rancm variable X follows
a binomial distribution with a succesgate p;, andwe
canapprximate p; = X/s by the nomal distribution
with meanp; andthestandardieviation /p;(1 — p;)/s.
Whenwe do not know p; value,the standarddeviation
V/ pi(1 — p;)/s is often appoximatedby 21? [17], so
we may assumethat p; follows the nomal distribution
N(pi, 2—\1/5)-

When g; follows this normal distribution, the proba-
bility Pr{p; > p;} is 0.95 whenp; = p; — 1.65%.
Thatis,

1.65
Py(pi) = 0.95 whenp; = p; + 2/n 3)
By comparingEquatiors 2 and3, we canseethat
5o 165 1
“2/n Jn .
Theorem 3 Wheneverypage changsat somepointsof
time everypageis evertually downloaled. o

Proof Theproof is straightbrward. Let us selecta ran-
dom pagethat belong to site S;. Becauseavery page
changs,thereexistsatime ¢t whereall pagesn S; have
changd. Then in thedownloadcycle aftert, thesite S;
will bedownloadeduncerthegreed policy, becaseall
samplepagedn S; have changd. n



