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Abstract

For a large-scale data-intensive environment,
suchastheWorld-WideWebor datawarehous-
ing, we oftenmake local copiesof remotedata
sources. Due to limited network and compu-
tationalresources,however, it is oftendifficult
to monitor the sourcesconstantly to checkfor
changesandto downloadchanged dataitemsto
the copies. In this scenario, our goal is to de-
tectasmany changesaswe canusingthefixed
download resourcesthat we have. In this pa-
perweproposethreesampling-baseddownload
policies that can identify more changed data
items effectively. In our sampling-basedap-
proach, we first samplea smallnumberof data
itemsfromeachdatasourceanddownloadmore
dataitemsfrom thesourceswith morechanged
samples. We analyzethe effectivenessof the
sampling-basedpoliciesandcompareour pro-
posedpolicies to existing ones,including the
state-of-the-artfrequency-basedpolicy in [7, 9].
Our experimentson syntheticand real-world
data will show the relative merits of various
policiesandthegreatpotentialof oursampling-
basedpolicy. In certaincases,our sampling-
basedpolicy could download twice as many
changeditemsasthebestexistingpolicy.

1 Introduction
Many applications often make local copiesof remote
datasources. For instance,a datawarehousemaycopy
remotesalesand transactionrecords for local analysis.
Similarly, a Web searchengine copies a subsetof the
Web andindexesthemto helpusersaccessWeb pages.
In many cases,theremote sourcesareupdatedindepen-
dently of the local copies, so we mustperiodically poll
anddownload datafrom the sourcesto detectchanges
andincorporatethemto thecopies.

Change detection and download is often performed
in batchat a regular interval, typically during off-peak
hours, to avoide interferencewith the main tasksthat
the sourcesand/orclients perform. As the size of the
datagrows, however, detectingchangesandincorporat-
ing themto thecopiesbecomeincreasingly difficult. Due

to limited network andcomputationalresources,wemay
not beableto checkevery dataitem in thedatasources
within thelimited time window, sowe maymisscertain
changesat thesources.

In this paper, we addresssomeof thechallengesthat
arisein this context: How canwe detectanddownload
asmany changeddataitemsaswe can,whenthesource
datais updatedindependentlyandwhenwe have limited
resources?In this scenario, it is important exactly what
itemwe decideto downloadandcheck, becausewe may
wasteasignificantportionof ourresources, if werepeat-
edlydownloadunchangeditems.

As we will discussin moredetail later, our mainidea
is to usesampling. That is, we first download a small
number of dataitemsfrom eachdatasource assamples,
andusethe samplesto decidewhich sourceswe down-
loadmoredataitemsfrom. While theideais simple,our
lateranalysisandexperimentswill show thatsampling-
basedpolicieshavegreatpotentialandleadto significant
improvement.

Although theproblem of changedetectionanddown-
loadarisesin various contexts, our work is mainly mo-
tivatedby our needto manage Web data. In our Web-
Archive project [19], we try to storemultiple versions of
Web pagesover time, so that userscanaccessthe Web
of, say, 10 yearsago. Due to our limited network re-
sources,however, we cannot constantlydownloadevery
pageto checkfor changes,soweneedto carefully select
whatpages to downloadandcheck. A similar serviceis
currently providedby theWayBack Machine [18]. Web
searchenginesalsohave to address the sameproblem,
becausethey have to periodically revisit Web pages in
orderto maintaintheir indexesup-to-date. This task is
typically performedby aprogram,calleda Webcrawler.

Recently, Cho et al. [7] andCoffmanet al. [9] stud-
ied how a crawler candetectmore changesby predict-
ing page change frequencies. That is, the crawler con-
stantlyestimateshow oftena pagechangesbasedon the
pastchangehistory of the page, andusesthis estimate
to decidehow often it will revisit the pagein the fu-
ture.Differently from theexistingwork, this paper stud-
ieshow we candetectmorechangesusingsampling. As
ourlaterexperimentswill show, oursampling-basedpol-
icy leadsto significantimprovement from thefrequency-
basedpolicy in many cases. In an experimenton real



Web data,our sampling-basedpolicy detectedtwice as
many changes as the frequency-basedpolicy in certain
cases!

In order to designand implement a good sampling-
basedpolicy, therearemany questionsto address. For
example, how many samplesshoulda crawler take from
eachdatasource?Cana crawler dynamicallyadjustthe
samplesize to improve effectiveness? How should a
crawler usethe resultsfrom sampling? Can we com-
bineasampling-basedpolicy with thechange-frequency-
basedpolicy? To address thesequestions, we organize
therestof thepaperasfollows:� In Section2, we presenta framework to studythe

change detectionanddownload problem. We dis-
cussvarious change-detection policiesandpresent
evaluation metricsto compare differentpolicies.� In the first half of Section 3, we propose two
sampling-basedpolicies,proportional andgreedy,
andanalyzetheir effectiveness.We derive theopti-
malsamplesizethatmaximizestheeffectivenessof
a sampling-basedpolicy.� In the secondhalf of Section3, we propose an
adaptive-samplingpolicy that candynamically ad-
just thesamplesize,basedon thechangesdetected
sofar. We alsostudythescenariowherewe cannot
sampleenough pagesfrom eachdatasourcedueto
ourvery limited downloadresources.� Finally in Section4, we experimentallycompare
our sampling-basedpolicy to others,including the
state-of-the-artfrequency-basedpolicy. Our exper-
imentswill show that our samplingpolicy is often
significantlybetterthanexisting ones. The exper-
imentswill alsoreveal the respective meritsof our
sampling-basedpolicy andthefrequency-basedpol-
icy. To thebestof our knowledge,our work is the
first oneto studytheeffectivenessof thefrequency-
basedpolicy experimentallyon real data. The re-
sults will shedlight on how we may usevarious
policiesin anactualsystem.

2 Framework
In thispaper, weassumethatthesourcesareupdatedau-
tonomouslyandindependentlyof thelocalcopy. Thatis,
weassumeapull modelwherethelocalcopy needstope-
riodically checkthedatasources to detectanddownload
changes.Thismodelis in contrastto apushmodelwhere
thedatasourcesarecooperativeandwilling to pushtheir
updates to the local copies. Recently, Olstonet al.[16]
startedinvestigatingthepushmodel, but we believe the
pull model is moresuitablefor many existing applica-
tions,including theWorld-Wide Web.

We alsoassumethat the local copy downloadsdata
items periodically in batch, say, every weekend. That
is, every weekend, we downloada fixednumberof data
itemsfrom the sourcesandupdatethe local copy using
thedownloadeditems.Wecall this interval – in thiscase
oneweek– asadownload cycle. Ourgoalis to download
as many changed items as possiblein eachdownload

cycle, using the samefixed download resources. This
assumptionis valid for an environment like the World-
Wide Web, wherewe maintaina large number of data
itemsresidingin many differentsources,andwe do not
have enough resources to updatethemall in a shortpe-
riod of time. Thefollowing example illustratesa typical
scenariothatweassume.

Example 1 We maintainlocalcopiesof 10million Web
pagesdownloadedfrom 10,000 sites. The 10,000 sites
do not inform us of any changes, so we needto peri-
odically download pagesto detectandsave changes in
ourcopies.Sincemany usersheavily accessthesepages
during weekdays, we candownload the pagesonly on
weekends. Givenour network bandwidth we candown-
load up to onemillion pagesevery weekend. We want
to useour limited downloadresourceseffectively sothat
we candownloadasmany changedpagesaspossiblein
eachweek. �
2.1 Download policies

Whenwe candownload only a subsetof dataitems in
eachdownload cycle, we needto carefullydecide what
dataitem to download. Thereexist a multitudeof ways
for thisdecision,includingthefollowing:

1. Round-robin: We downloaddataitemsin a round-
robin fashionin eachdownload cycle. In caseof
Example 1, for instance,we download the first 1
million pagesin thefirst week,thesecond1 million
pagesin thesecondweek,etc.Becausewemaintain
10million pages locally, everypagewill beupdated
exactlyonceevery 10weeksin this policy.

2. Change-frequency-based:Basedonthepastchange
history of a dataitem, we estimatehow often the
item changes and decidehow often to revisit the
item. For instance,if we have downloadedanitem
onceevery monthfor oneyear, andif we detected
4 changes,we may estimatethat the item changes
onceevery 4 months and revisit the item accord-
ingly. For moredetaileddescription of this policy,
seereferences[7, 9].

3. Sampling-based: We first samplea small number
of data items from eachdatasource(e.g., a Web
site) and estimatehow many items in that source
havechanged.Wethenallocatedownloadresources
to eachdatasourceaccordingly, basedon the es-
timates. For instance,in caseof Example1, we
may download 10 pagesfrom eachof the 10,000
Websitesassamples(a total of 100,000 pagesam-
ples)andcount how many pagesin thesampleshave
changed. (For now, we assumethatwe needto ac-
tually downloada pageto seewhetherthepagehas
changedor not.) Thenbasedonthecounts,weallo-
catethe remaining 900,000download resourcesto
eachWeb site accordingly. Later in Section3, we
will discussthispolicy in more detail.

The above threepolicies have their own merits and
advantages. The round-robin policy is currently being



usedby many systems[5, 13] due to its simplicity. It
alsoguaranteesthat every dataitem is downloadedat a
regular interval. Thefrequency-basedpolicy hasthefol-
lowing advantagesanddisadvantages:� Advantage: Thefrequency-basedpolicy is proven

to beoptimal whenwecanestimatethechangefre-
quenciesof dataitemsaccurately [7].� Disadvantage: 1) It is verydifficult to estimatethe
change frequency of a dataitem accurately. Unless
we have a long change history of a dataitem, ex-
isting estimationmethods often lead to unreliable
predictions[8], which in turnleadto anundesirable
downloadpolicy. In addition,thechange frequency
itself maychangeover time,but wemaynot realize
thatit haschanged.

2) In orderto estimatethe change frequencies,we
needto keeptrack of the change history of every
dataitem. When we maintaina large number of
items, this tracking may incur significantstorage
andmaintenanceoverhead

A sampling-basedpolicy doesnothavethedrawbacks
mentionedabove,becauseit makesa downloaddecision
purelybasedon thesamplestaken in thecurrentdown-
loadcycle. It doesnotneedto keeptrackof theprevious
change historyof dataitems.Laterin Section4, we will
comparetheeffectivenessof thefrequency-basedpolicy
andthesampling-basedpolicy usingrealWebdata.

At this point, someof the readersmay expect that
a sampling-basedpolicy would work only when the
changes of the dataitems in the samesourceare cor-
related. However, weemphasizethatthis is not thecase.
If we cantake random samplesfrom eachdatasource,
we areguaranteedthat the fraction of changed itemsin
the samplesis proportional – in a probabilistic sense–
to thefractionof changed itemsin thedatasource. Soa
sampling-basedpolicy doesnot assumeany correlation
betweenchangesof dataitems. We shouldonly beable
to take randomsamplesfrom eachdatasource.

Wealsonotethatit is possibletocombinetwoormore
policiesto achievedesirableproperties.For example, we
mayusehalf of ourdownloadresourcesin around-robin
fashionandusetheremaining half for a sampling-based
policy. Thisway, wecandetectmorechangesthanasim-
ple round-robin policy, while downloadingevery item at
leastat a certaininterval. Our studywill helpusemploy
a combinedpolicy better, through betterunderstanding
of thesampling-basedpolicy.

2.2 Evaluation metrics

In order to compare variousdownloadpolicies,we need
an evaluation metric. We list threepotential evaluation
metricsin thissubsection:

1. ChangeRatiometric: Informally, the ChangeRatio
metric counts how many changed itemswe down-
load in a download cycle andusesthis number as
its performance. More precisely, the ChangeRatio
metricis definedasthenumber of downloadedand
changed items in a download cycle over the total

number of downloadeditemsin thecycle. For ex-
ample,if we downloaded1 million items andde-
tected700,000 changed items,the ChangeRatio is
0.7. Sincethe ChangeRatiomay vary in different
downloadcycles,we take its averageover multiple
downloadcycles.Ourgoalis to maximizetheaver-
agedChangeRatio.

Note that in certaincasesdataitemsmayhave dif-
ferent “importance,” and we may want to detect
morechangesfrom more“important” items.To for-
malizethisnotion, wemayextend thesimpledefini-
tion of ChangeRatio by assigningweight ��� to each
item ��� anddefine

ChangeRatio 	�
�
��� ���������
�����
Here, ���
� � � is anindicatorfunction whosevalueis 1
whentheitem � � haschangedand0 whenit hasnot.�

is the set of items that have beendownloaded.��� ’sarenormalizedsothat � �
��� ����	�� . Whenall��� ’s areequal,this definitionreducesto thesimple
definition.

TheChangeRatio metricis particularly usefulwhen
we want to storethe change history of dataitems,
suchasfor the WebArchive project[19]. Because
our goal is to store as completechangehistory
as possible,we want to maximizethe number of
detectedchanges. A similar definition was used
in [11].

2. FreshnessandAgemetrics:In [7], weproposedtwo
othermetrics,calledfreshnessandage. Thefresh-
nessof item ��� at time � is definedas �
���"!#�#�$	&% � if � � is up-to-dateat time �'

otherwise.

(Up-to-datemeansthat the locally storedimageof
theitem is thesameastheimageat thesource) and
thefreshnessof theentirelocalcopy at time � is �)(*!"�#�$	 �+ ( + 
,"- �/.  �0� � !"�#�21
Here, ( is the set of all locally storeditems. In-
formally, the freshness metric representsthe frac-
tion of dataitems that are up-to-date. For exam-
ple, if we maintain 100 pagesandif 70 pages are
up-to-dateat � , its freshnessis

' 143 . Our goal is to
maximizethetime-averagedfreshnessunderourre-
sourceconstraints.

The secondmetric, the ageof item � � at time � , is
definedas5 �0���#!"�#�$	768 9 ' if ��� is up-to-dateat time ��;: modification time of � �

otherwise



andtheageof theentirelocalcopy is5 �)(*!"�#�$	 �+ ( + 
, - �/. 5 �
���"!#�#�21
Theagerepresents “how old” thelocalcopy is. For
example, if the sourcedataitem changed oneday
ago,andif we have not downloadedthe item since
then,theageof our local item is oneday. Our goal
is to minimize the time-averagedageusinglimited
resources.Similarly to theChangeRatiometric,we
can incorporatedifferent “importance” of objects,
by assigningweight �<� ’s to items and taking an
weightedaverage.

Thefreshnessandagemetricsaresuitablewhenwe
needto keepthe local items asup-to-dateaspos-
sible. However, note that the metricsare hard to
measureexactlyin practice.Thatis, in orderto esti-
matefreshness(or age), weneedto instantaneously
comparethesourceitemsto thelocalones,whichis
oftenvery difficult whenwe maintaina large num-
ber of data items. In addition, we want to opti-
mize the time-averaged freshnessand agevalues,
but thetime average canbeobtainedonly whenwe
know the entire change historyof every dataitem.
Therefore,mostof thestudieson freshnessandage
areconductedthrough theoretical analysis, assum-
ing somestochasticmodelsfor datachanges.

3. Divergencemetric: In [16], Olstonet al. proposed
averygeneral“staleness”metriccalleddivergence.
Intuitively, a divergencevaluerepresentshow dif-
ferent a local data item is from the source item.
For example, in a stock-market-monitoring appli-
cation– wherewe locally copy stockprices– we
may definethe divergenceof a stockquote as the
differencebetweenits current priceandthelocally-
storedvalue. In general, a divergencemetric can
be definedas any monotonically-increasingfunc-
tion [16].

In this paper, we mainly usetheChangeRatio asour
evaluation metric. We madethis choicebecause1) it
is easyto measurein practiceon real dataand2) high
ChangeRatioindirectly implieshigh freshness,low age,
andlessdivergence.

3 Sampling-based policies
In this section, we discusssampling-baseddownload
policiesin more detail. We startour discussionby clari-
fying ourcostmodel for sampling.

3.1 Sampling cost model

A sampling-basedpolicy needsto samplea few data
items from eachdatasourcein order to estimatehow
many items in the sourcehave changed. During sam-
pling, we assumethat we needto download an entire
dataitem to checkwhethertheitem haschangedor not.
That is, we assumethat thecostfor samplinganitem is
the sameasthecostfor actuallydownloading the item.

For example, if we candownload100,000dataitemsin
eachdownloadcycle andif we samplea total of 10,000
data items, we can download 90,000 more data items
in that cycle. We also assumethat we do not needto
download a sampleditem againin the samedownload
cycle, becausethe item wasalreadydownloadedduring
sampling. Thisassumptionmakesourdiscussionsimple,
andit is straightforward to extendour current modelto
thecasewheresamplingcostis lower thandownloading
cost.For instance,if sampling costis only � '/= of actual
downloadingcost,wemayassumethatwecandownload>�>@?"'A'�'

( 	B� 'A'C?"'A'�' : ' 1D����� 'C?E'�'�' ) moredataitemsfor
theabove scenario.

3.2 Greedy and proportional policies

Wenow discusstwo sampling-basedpolicies,greedyand
proportional. To make our discussionconcrete, we use
thefollowing asour running example.

Example 2 We locally mirror two Web sites
5

and F .
EachWeb site has100 pages. We can download 100
pageseveryweekend. To estimatehow many pageshave
changed,we sample10 pagesfrom eachsite. Out of the
10 samples,3 pageschangedin

5
and G pageschanged

in F . We needto decidehow to allocatethe remaining
80 ��	H� '�' :IGJ�K� ' � pagedownloadresourcesto

5
andF . We assumethateverypageis equallyimportant. �

Given the sampling results, we may allocate the
downloadresourcesto

5
and F eitherproportionally or

greedily.
1. Proportional policy: We allocatetheremaining re-

sourcesto a site proportionally to its number of
changedsamples.Thatis, we download L ' �&MMENPO 	Q G pagesfrom site

5
and L ' ��OM"NRO 	��SL pagesfrom

site F .

2. Greedypolicy: We start from the site that hasthe
most changed samplesanddownload all pages in
the site. If we still have remaining download re-
sources,wedownloadmorepagesfrom thesecond-
mostchanged site. We continue this processuntil
we runoutof downloadresources.In theaboveex-
ample,weuseall L ' remaining resourcesfor site

5
,

because
5

hasmorechanged samplesthan F .
In bothpolicies,weallocatemoredownloadresources

to thesiteswith morechangedsamples,hoping thatwe
will detectmore changes. While both policiesarerea-
sonable,we canseethat the greedy policy is expected
to yield betterChangeRatiothantheproportional policy
from thefollowing simpleanalysis.

Probabilistically, MTVU 	W3 '/= of the pagesin site
5

would have changed and OTVU 	XG 'K= of F pageswould
have changed. Therefore, the proportional policy is ex-
pectedto detect

' 143Y� Q G<Z ' 1[GJ�@�\L]	&^_3 changesfrom
pagedownloads.Including the9 ( 	`3;Z]G ) pagechanges
detectedduringsampling, we detecta Q changesin total
(i.e., the ChangeRatio is a QKb � '�' 	 ' 1[a Q ). In contrast,
thegreedypolicy is expectedto detect

' 143c�dL ' Z > 	 Q a
changesin total (ChangeRatioof

' 1 Q a ).
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Figure 1: ExpectedChangeRatio for various sample
sizes

In general, it is straightforward to prove that the ex-
pectedChangeRatio of the greedypolicy is the highest
among all sampling-basedpolicies.

Theorem 1 (Optimality of Greedy Policy) We sample
thesamenumber of randompagesfromeachdatasource
and allocate remaining download resources basedon
the samplingresults. In this scenario,the greedypol-
icy is expectedto givethehighestChangeRatiooutof all
sampling-basedpolicies. �
Proof SeeAppendix. e

The above theoremshows that the greedy policy
yields betterChangeRatio on average than the propor-
tional policy. However, the greedy policy may have
larger variation in its performance, becausethe greedy
policy aggressively allocatesall of its resourcesto the
sitewith moreestimatedchanges. Whentheestimation
is correct,this choiceyieldsveryhigh ChangeRatio, but
whentheestimationis incorrect, it alsoyieldsvery low
ChangeRatio. In contrast,theproportionalpolicy down-
loadspagesfrom everysite,soevenwhentheestimation
is inaccurate,it still shows relatively high performance.
Later in Section4, we will investigate this issueexperi-
mentally.

3.3 Optimal sample size

In a sampling-basedpolicy, the sizeof samplesaffects
performancesignificantly. In this section,we studythe
optimalsamplesizethatyieldsthehighestChangeRatio.
In order to understandthe impact of samplesize, let
us consider a scenariosimilar to Example 2, but now
assumethat we sample50 pagesfrom eachsite (in-
steadof 10). In this case,we useall of our 100 down-
loadresourcesjust for sampling, sowecannotdownload
any morepagesfrom thesitewith morechangedpages.
Therefore, the performanceof a sampling-basedpolicy
would be similar to that of the round-robin policy, be-
causewe download random pages during sampling.At
the otherextreme,if we sampleonly oneor two pages
from eachsite, thereis a high chancethat theestimated
number of changesfrom samplesis inaccurateandwe
makeawrongdownloaddecision.

Figure1 illustratesthis issuemore precisely. We ob-
tainedthegraph assumingthattherearetwo sites,

5
andF , with 100 pageseach,and we download 100 pages

in onedownloadcycle. We alsoassumedthat70 pages
changed in site

5
and20 pages changed in site F . The

horizontal axisshows thesamplesizethata policy uses
andthevertical axisshows theexpectedChangeRatioof
the round-robin, greedyandproportionalpoliciesat the
givensamplesize.Thegraphwasobtainedanalytically.

Note that the greedy and the proportional policies
show the same expected ChangeRatio,

' 1 ^Ka , as the
round-robinpolicy whenthesamplesizeis either

'
or a ' .

This is becausewhenthesamplesizeis 0, bothpolicies
selecta random site for download, andwhenthe sam-
ple sizeis a ' , bothpoliciesuseall its resourcesjust for
sampling. Also notethattheproportional andthegreedy
policiesshow similar performancewhensamplesize is
small ( fgGA� . This little difference is becausethegreedy
policy is morelikely to makeaninaccuratedownloadde-
cisionwith smallsamples.It needsto sample“enough”
pagesto make a gooddecision.Fromthegraph, we can
seethatthegreedy policy showstheoptimalperformance
whenit samplesabout 5 pagesfrom eachsite.

In general, we canderive theoptimal samplesizefor
the greedy policy analytically. To help derivation, we
first introducesomenotation.

Weassumethatall Websiteshavethesamenumberof
Webpages,h . In practice,differentWebsitesmayhave
differentnumbersof pages,but in this case,we mayin-
terpreth astheaveragenumberof pagesin overall sites.
Weusei to representtheratioof ourdownloadresources
to thetotalnumberof pages thatwemaintain.For exam-
ple, if we maintain G '�' pagesandif we candownload� 'A' pagesin eachdownload cycle, i is

' 1[a . We use j �
to representthefractionof changedpages in site k�� . For
instance,if site k T has � '�' pagesandif 3 ' pageshave
changed, j T 	 ' 143 . Whensiteshave different jl� values,
wecanplot thehistogramof j�� values asin Figure2 and
approximate it by a continuous density function m;�
jK� .
Thegoalof thegreedy policy is to downloadpagesonly
from thesiteswhosej � valuesarethehighest � '�' ��i =
(say, thegrayregion in thefigure). We use jPn to repre-
sentthethresholdj value: Thesiteswhore j valuesare
higher than j n belongto thetop � 'A' �2i = sites.We use oj
to represent theaveragej valuesoverall sites.Weuse ojPp
to representtheaverage j valuesof thesitesin thegray
region (thesiteswhose j valuesareabove j n ). In Table1,
we summarizeour notation. Someof thenotation in the
tablewill beintroducedlater.

Under this notation,we canexpect that the optimal
samplesizewill dependon thedistribution m;�qj_� , our re-
sourceconstraints, andthenumberof pagesin theWeb
sites. The following theorem shows how theseparame-
tersaffect theoptimalsamplesize.

Theorem 2 (Optimal sample size) Theoptimal sample
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Notation Meaningr
Averagenumber of pages in all sitess
Available downloadresourcest Ratio of downloadresources to the total number
of pages wemaintainu SampleSizev
Granularity (samplesize)of adaptivepolicyw Confidencevalueof adaptivepolicyx\y Fractionof changedpagesin site z y{C| xS} Densityfunction of all websites’ x valuesxd~ Threshold x value. If x�y@��xd~ for somez y , then z y
belongsto thehighest�#����� t2� sites�x Averagex valuesover all websites�x\� Averagex valueof websiteshaving xAy@��xd~

Table1: Notationusedthroughoutthepaper.

size, � , under thegreedypolicy is approximately�<�B� h�i�m;�qj n �Q �Soj/p�:�ojK� �
Proof Due to its length and complexity, we give the
proof in theappendix. e
Intuitively, wecanunderstandtheresultof Theorem2 as
follows: First, when i is large (i.e., whenwe have rel-
atively largedownload resourcescompared to thenum-
ber of pagesthat we maintain)we canusemoreof our
resourcesfor sampling, because we canstill download
many pagesfrom high j sitesusing the remaining re-
sources.Second,when h is large(i.e., whenWebsites
have morepages),we needto samplemorepagesfrom
thesitesto predict their j valuesbetter.

Another factor, ojlp<:�oj , indicatesthatwe cansample
lesspages when ojCp<:�oj is high (i.e., whenthe j values
of the top � 'A' ��i = Web sitesaremuchhigher thanthe
average j value.) This is becausewhenthe j valuesare
very different among the sites,the estimatedj � values
from sampleswill beverydifferent,soit becomeseasier
to identify thehigh j sitesfrom theothers.

Thefinal factor m;�
jCnV� indicatesthatwe needto sam-
ple morepageswhenthe valueof the densityfunctionm;�qj_� is highat j n . This is becausewhenmany Websites
have j valuescloseto j n (i.e., when m;�qj n � is large), it
is more difficult to tell exactly which siteshave j values
higher/lower than j n .

Usingtheformula in Theorem2, we canestimatethe
optimalsamplesizewhenwe know thedistribution of j
values. In certaincases,however, the distribution may
beunknown, andwe maynot computetheoptimal sam-
ple sizeaccurately. Evenin this scenario, we believe the
resultof Theorem2 is still useful,becauseit shows that
the optimal samplesize � is proportional to the square
root of h�i . As a rule of thumb, therefore,whenwe do
not know theexactdistribution of j values,we mayuse� h�i asa rough approximation for the optimal sample
size. Clearly, other factorsare important to determine
the exact optimal size, but this approximation will be
roughly in the samerangeasthe optimal size,different
only by a constantfactor. Later in the experimentsec-
tion, we will verify the resultof this sectionusingreal
Webdata.

3.4 Adaptive sampling

Thepoliciesthatwe have discussedsofar aretwo-stage
policies.Thatis, wefirst takea fixednumber of samples
from eachsite at a samplingstage, andthenwe down-
loadmorepagesfrom high j sitesat a download stage.
Insteadof a two-stagepolicy, we now discussan adap-
tive samplingpolicy that tries to adjustthe samplesize
dynamically andadaptively.

Our new adaptive policy is essentiallybasedon the
greedy policy: After samplingsomepagesfrom each
site, if we arecertainthat the j valueof a site is very
high, we downloadall pagesfrom the site. The differ-
enceis thatthesamplesizeis notdetermined in advance
under theadaptive policy.

To illustrate, let us assumethat we maintain local
copiesof 4 Web sites, k T through k�� . Their j values
are j T 	 'C? j O 	 ' 1 ^Ka ? jK�c	 ' 1 aAa ? j � 	&� , andeachsite
has100pages.We candownloada total of G '�' pagesin
eachdownloadcycle. Roughly, ourgoalis to identify the
two Websiteswith high j valuesthatwe will download
pagesfrom.

Giventhehigh j valueof thesite k � , we canexpect
that thesamplesfrom k � will have muchmorechanges
thantheothersamples.Therefore,it is relatively safeto
pick k�� for pagedownloadearly in our sampling.Simi-
larly, it is safeto discardk T earlyon,becauseof its low j
value.Comparedto k T and kP� , k O and k � require larger
samples,becausetheir j valuesaresimilarandit is diffi-
cult to tell whichonehasahigher j value.Basedonthis
intuition, we proposethepolicy describedin Figure3.

The algorithm takes two input parameters, � and�
, whoseintuition is given later. Roughly, the algo-

rithm proceedsasfollows: It samples
�

pagesfrom each
Web site, andbasedon the samplesit estimatesthe j �
valueandits � '�' ��� = confidence interval for eachsite
(Steps[3] through[6]). Giventhedistribution of thees-
timated jK� values, it canpredict the thresholdj n value
(Step[7]). For example, if we candownloadabout half
of the sites in eachdownload cycle, and if half of the
estimatedj � ’s areabove

' 1 Q , jCn;	 ' 1 Q .
After estimatingj n , it comparestheconfidenceinter-

valsof j_� to thethreshold. If theconfidenceinterval for



Algorithm 3.1 Adaptive-sampling policy
Parameters:� : confidencelevel (avaluebetween0 and1)�

: numberof pagesto samplein eachiteration
Procedure

[1] S = �V�������\�#�0�0�)���\��� // Setof sitesto besampled
[2] Loopwhile we havedownloadresources
[3] For eachsite ����  S
[4] Sample

�
pagesfrom ���

[5] ¡ � = Estimateof ¡ valuefor � � baseon thesamplessofar
[6] ¢ £ � ��¤ �4¥ = ¦)§¨§ª© ��« confidenceinterval for ¡ �
[7] Compute threshold ¡�¬ from thedistributionof estimated¡\� ’s
[8] For eachWebsite ��� in S
[9] If ( ¤d��­c¡#¬ ) S = S - �S�

// ¡E� too low. We donotdownloadfrom �/�
[10] If ( ¡®¬/­¯£ � ) downloadall pagesin ��� andS = S - �S�

// ¡E� veryhigh. We downloadpages from �K�
Figure3: Algorithm of theadaptive-samplingpolicyk�� is strictly lower thanthethreshold( ° �²±³j n ), it stops

samplingfrom thesite(Step[9]); It hasenoughevidence
that the j_� of kP� is below thethreshold. Similarly, if the
confidenceinterval of k´� is strictly above the threshold
( j n ±Iµ�� ), it downloadsall pagesfromthesite(Step[10]).

The � and
�

valuesareconfigurationparameters set
by the user. When the � value is low, the algorithm
makes a download/discard decision“aggressively” and
picksasitefor download(or discard) evenwith low con-
fidence.Thus,it allocateslessresources to samplingand
moreresourcesto page downloads. The

�
valuedeter-

mines the granularity of samplingadjustment. When�
is small, the algorithm re-estimatesjl� valuesmore

frequently andmakesa download (or discard)decision
moreoften.Thus,thealgorithm mayshow betterperfor-
mancebut it mayrequire moreprocessingpower. Later
in Section4, we will studytheimpactof � and

�
values

on theeffectivenessof thepolicy. We will try to identify
good � and

�
valuesthatyield highperformance.

3.5 Subset sampling under low download resources

Sofar, we have implicitly assumedthatwe have a suffi-
ciently largeamount of download resources,so that we
cansamplea reasonable numberof pagesfrom eachsite
andstill downloadmorepagesfrom high j sites.In cer-
tain cases,however, this assumptionmay not be valid.
We maynot beableto sampleenough pages from each
site, dueto our limited resourcesavailable. In this sec-
tion, we studyhow we should handlelow-resourcesce-
narios.

Generally, there is an interesting relationship be-
tweenthe downloadresourcesizeandthe performance
of a sampling-basedpolicy. At oneextreme,whenwe
havefew downloadresources andcannotsampleenough
pagesfrom eachsite,asampling-basedpolicy wouldper-
form similarly to theround-robin policy: aftersampling
a coupleof pagesfrom eachsite, we cannot download
any more pagesfrom high j sites,andwe endup vis-
iting a small but different portion of the pagesin each
cycle, just like theround-robin policy. (Becausewe take
random samples,we will visit different pagesin differ-
entcycleswith high probability.) At the otherextreme,
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Figure4: Comparison of the round-robin policy anda
samplingpolicy for variousresourceconstraints

if we have enough resourcesto downloadevery pagein
eachdownloadcycle, a sampling-basedpolicy will per-
form similarly to the round-robin policy again,because
bothpolicieswill downloadall pagesin everycycle.

Figure 4 shows a hypothetical graphthat illustrates
this relationship. Thehorizontalaxisshows theresource
ratio i (the number of download resourcesto the num-
ber of total pages we maintain). When i is 1, we can
download all pagesin eachdownload cycle, andwheni is 0, we can download no page. The vertical axis
shows theperformanceratio of a sampling-basedpolicy
to the round-robin policy (ChangeRatioof a sampling-
basedpolicy over ChangeRatioof the round-robin pol-
icy). When the sampling-basedpolicy performs better
thanthe round-robin policy, this ratio is higher than � .
In thegraph, asampling-basedandtheround-robin poli-
ciesshow similar performance(theperformanceratio is� ) whenresourceratio i is closeto either0 or 1, because
of the reasonsdiscussedabove. In betweenthesetwo
extremes,a sampling-basedpolicy shows betterperfor-
mancethantheround-robin policy.

To improveperformancefor thescenarioof very lim-
itedresources( iY� ' ), weproposethatasampling-based
policy shouldselecta small subsetof its data in each
download cycle, andsampleanddownload pages only
from thesubset:� Subsetsamplingunder low download resources:

When the download resources are too limited to
sampleenough pagesfrom eachsite,we group the
sitesinto ¶ subsets.In eachdownload cycle, we
pick one subsetand sampleand download pages
only from thesitesin thesubset.Werevisit thesub-
setsin a round-robin manner over multiple down-
loadcycles.

For instance,considerthefollowing example:

Example 3 We maintain local cachesof Web pages
from 1000 sites. EachWeb site has100 pages.Every
weekend, we candownload 500 pagesin total. In this
scenario,our simplegreedy (or adaptive) policy cannot
work effectively, becausewe cansamplelessthanone
pagefrom eachsite.

To handle this scenario, we may use the subset-
samplingpolicy. First,wedividethesitesinto groupsof,
say, 10 sites. Every week,we selecta group of 10 sites



andsample,say10 pagesfrom eachof the10 sites.As-
sumingweusethegreedy-policy, wecanusetheremain-
ing ^ '�' ( a '�' :·� ' �¸� ' ) downloadresourcesto download
pagesfrom high j sites. �

Whenweneedto usethesubset-samplingpolicy, one
important questionis how many siteswe shouldput in
eachsubset.Shouldwesample10sitesin onedownload
cycle,samplingall 1000sitesover100cycles?Or should
we sample20 sitesin eachcycle? Theanswerdepends
ontheamount of availableresourcesandthedistribution
of j valuesamongthesites.Although wecannot derivea
closedformulafor theoptimalnumberof sitesto sample,
we believe that the number shouldbe determined such
that we candownload all pages from high j sitesafter
sampling.

For example, if the j valuesfollow thedistribution of
Figure2, andif roughly ¹ '/= of the sitesbelong to the
grey region (high j region), we shouldbeableto down-
load all pagesfrom thesetop ¹ '/= sitesin eachdown-
load cycle. If our subsetis too small andif we have to
downloadpagesfrom lower j sites(given our download
resources),performancewould degrade. If our subsetis
too large and if we “waste” most of our resourcesfor
sampling, performancewould alsosuffer. Later in Sec-
tion 4, we experimentallystudytheeffectivenessof the
subset-sampling policy.

3.6 Is Greedy too greedy?

While thegreedy (andadaptive) policy canimprove the
overall ChangeRatio, it maybepossiblethatsomepages
are never downloaded, becausethe policy downloads
pagesonly from thehigh j sites.Thefollowing theorem
provesthatthis is not thecase.

Theorem 3 Wheneverypage changesat somepointsof
time, everypage is eventually downloaded. �
Proof SeeAppendix. e
Although the theoremprovesthatevery pagewill even-
tually be downloaded,it doesnot guaranteethat pages
aredownloadedwithin a “reasonable” periodof time. It
alsodoesnot addressthe casewhensomeof the pages
doesnot change at all. In our experiment section,we
will studyhow ofteneachpage is downloadedunder the
greedy policy usingreal Web data. We alsonotethat
if it is important to downloadevery pagewithin a cer-
tain interval, we maydecideto combine theround-robin
policy with thegreedy(or othersampling-based)policy.
For example, wemaywantto use,say, ¹ 'K= of download
resourcesin around-robin fashionandusetheremaining3 'K= for thegreedy policy.

4 Experiments
Following on from our theoretical analysis, we con-
ducteda number of experiments in order to study the
behavior and performance of the aforementionedpoli-
cies. Most of our experimentswereconductedon real
datacollectedfrom the Web. The datasetcontained 6-
month change history of approximately ¹Aa�¹ ?"'A'�' Web
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Figure5: Histogramof jl� valuesin thedataset.

pagesdistributedamong GAa�G Web sites. The datawas
collectedby our WebArchive crawler, which visited the
Web sitesonceevery month for a periodof 6 months.
Sincechanges could be detectedonly from the second
visit (in the first visit, we do not know whethera page
haschangedor not), we hada total of a changehistory
datafor eachpage. Thus,our experimentscould run up
to 5 downloadcycles.

It mayseemthat5downloadcyclesis relatively small,
but aswe will seein the following sectionsit is enough
to bring up thepotential of thesamplingpolicies. Also,
when it is necessaryto run experimentson a longer
change history, we assumedthatour 5 cycle datawould
repeatover time. That is, if we detectedchanges from
a pagein the 2nd and5th cycles,we assumedthat we
detectchangesin 7th, 10th,12th,15thcycles,etc. Our
datasetis publicly availablefrom ourWebsite[19].

We shouldemphasizethat our later experimentsdid
not actuallycrawl anddownloadpages.All experiments
wereconductedon the samedatacollectedby our We-
bArchive crawler. This setupenablesa fair comparison
among policies. Also, throughout experiments,we as-
sumethatthecostfor samplingapageis thesameasthe
costfor actuallydownloadingit.

4.1 Distribution of j values

Westartourdiscussionby investigating thepropertiesof
our dataset.In particular, we show thedistribution of j
valuesof the sites(Section3.3) in Figure5. The hori-
zontalaxis represents rangesof j values,andthe verti-
cal axisshows thenumber of Websiteswith thegiven j
value. Label

' 1»� on thehorizontal axismeanstherange
of
'

to
' 1»� . Note that the j valueof a sitemayvary be-

tweendownload cycles. However, we could not detect
any meaningful fluctuationin j valuesbetweencycles
from ourdataset.We plottedthehistogramusingtheav-
erage j value of a siteoverall a downloadcycles.

This figure shows that in our data,thereexist quite
a few Web sites whosepageschangevery frequently.
About �SL = of the siteshas j valuesbetween

' 1 > and� . Also, a lot of sitesarestaticandremain(almost)un-
alteredthroughout our experiment. More than ¹/a = of
the siteshas j valuesbetween0 and0.1 This fact intu-
itively suggeststhat1) it canberelatively easyto detect
thehighandlow j sitesusingsamplingand2) if we can
identify the Web siteswith very high andlow j values
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and allocateour download resourcesappropriately, we
mayobserveasignificantimprovement in thenumberof
detectedchanges.

While ourdataindicatesthatthe j valuesof Websites
follow a V-shapeddistribution, it will bealsointeresting
how variousdownloadpoliciesperform for different dis-
tributions. For this reason, we also ran someof our
experimentson a syntheticdatawhosej valuesfollow a
normaldistribution. Theresultsonthesyntheticdataare
reportedin Section4.8.

4.2 Rough comparison of download policies

In this section,we conduct a rough comparisonof vari-
ouspoliciesusingour realdata.For theexperiments,we
assumedthat eachpolicy candownload ¼½	¾� '�'C?E'�'A'
pagesin eachdownload cycle. Thegreedyandpropor-
tional policiesusedsamplesize �Y	¿� ' andtheadaptive
policy used

� 	�� ' (discussedin Section3.4) andacon-
fidencelevel �À	 ' 1 > . Note thatwe did not try to opti-
mize theseparameters. We selectedthe numbersrather
arbitrarily for this experiment. However, we believe that
theresultsfrom this experimentwould show therelative
potential of various algorithms. In latersectionswe will
beexamining theimpactof thevariousparametersmore
thoroughly.

Figure6 shows the results. The horizontal axis cor-
responds to various policiesandtheverticalaxis shows
theChangeRatiosof thepolicies(averagedover 5 down-
load cycles). From a first glimpse at this figure, the
readercan observe that our greedy(Grd) andadaptive
(Adp) policies perform surprisingly well compared to
theround-robin (RR)andeven thefrequency-based(Frq)
policy. Their ChangeRatios arealmosttwice ashigh as
the frequency-basedpolicy! Sincetheir ChangeRatios
are around

' 143�a , even if we could designa hypotheti-
cal oraclepolicy, which couldmagically downloadonly
changed pages,the improvement would be less thanG�a = . Theperformance of theproportional (Prp)policy
is similar to thatof thefrequency policy, andtheperfor-
mancedifference betweenthe greedyand the adaptive
policy is marginal.

While the resultsstrongly indicate that the greedy
andtheadaptive policiesarevery effective, we notethat
the frequency-basedpolicy could not show its full po-
tential in this experiment,due to our small number of
download cycles. Sincethe frequency-basedpolicy did

not know how oftenpageschange, it visitedeverypage
oncein a round-robin mannerin thebeginning,until the
first half of the 4th cycle.1 Only after that, the policy
startedto adjustrevisit frequenciesbasedon estimated
change frequencies. Therefore, in the first three vis-
its, thefrequency-basedpolicy showedthesameperfor-
manceastheround-robin policy andonly from thesec-
ond half of the 4th download cycle, it startedto show
someimprovement.

Becauseof this fact,thecomparisonof thefrequency-
basedpolicy andoursampling-basedpoliciesmaynotbe
fair, but we notethatthis is thesituationin any practical
system. Any systemhasto estimatepage change fre-
quenciesin order to usethefrequency-basedpolicy, soit
will suffer from poor performance in the beginning. In
contrast,oursampling-basedpoliciesperform well with-
out any change historydata.Lateron, we will compare
thelongtermperformanceof thefrequency-basedpolicy
andourgreedy policy.

4.3 Optimal sample size

In this subsection,we examine the impactof the sam-
ple sizeon theperformance of sampling-basedpolicies.
For this purpose,we ranthegreedyandtheproportional
policieson our dataset,keepingthe resource sizecon-
stantto 100,000pages andvarying thesamplesizefrom� to ^ 'A' . The outcome of this experiment is drawn in
Figure7. Thehorizontal axisrepresentsthesamplesize
andthevertical axisshows theChangeRatio at thegiven
samplesize. Fromthe graph, we canconfirm the trend
thatwe discussedbefore:� When the samplesize is too small, a sampling-

basedpolicy shows poor performance. It often
makesa poordownloaddecision. This degradation
is particularly noticeable for thegreedypolicy.� When the samplesize becomes too large, perfor-
mancealsodegrades,becausesampling-basedpoli-
cies wastemore resourcesfor sampling than they
ought to.

We canseethat the optimal samplesizefor the greedy
policy is around10–50. Thisrangematcheswell with the
prediction of Theorem2. In Section3.3 we arguedthat� h�i is agood ruleof thumbfor theoptimal samplesize
whenwe do not know theexactdistribution of j values.
Givenour parameters( h½	g¹Aa�¹ ?"'A'�'Kb G�aAG<�&� ? ^ '�' andiI	Á� 'A'C?"'A'�'Kb ¹Aa�¹ ?E'�'�' � ' 1 G�L ), this formula predicts
that the optimal samplesizeis

� h�iÂ�ÃG ' , which is in
therangethatweobservefrom ourexperiment.

Fromthe graphwe canseethat for all samplesizes,
thegreedypolicy showsbetteraverageChangeRatiothan
theproportional policy. Weexpectedthis resultfrom our
discussionin Section3.2,but we alsodiscussedthat the
greedy policy may have a larger variation in Change-
Ratio than the proportional policy. To compare their
variations,wemeasuredthestandard deviation (s.t.d.)of

1We had Ä2Å2ÄSÆVÇ2Ç2Ç pages and we visited È#Ç2ÇSÆ)Ç2Ç2Ç pages in each
download cycle. Therefore,we need Ä�ÉÊ cycles to visit every page
once.
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ChangeRatiobetweendownloadcyclesfor bothpolicies.
Fromthis estimation,we couldseethat thes.t.d. of the
greedy policy is larger thanthatof theproportionalpol-
icy (e.g.,0.027 vs. 0.023 for samplesize1). However,
becausethevariation is verysmall( Ë ' 1 ' G ) comparedto
average ChangeRatio ( Ë ' 143�a ), we believe thatthevari-
ationissueis of negligible importance.

4.4 Resource size and subset sampling

We now studytheeffect of varying resourcesizeon the
performanceof the greedy policy. For the experiments,
we ran the greedy and the round-robin policieson our
dataset. Thegreedy policy usedthesamplesize � ' and
we varied the resource size ¼ from 3,000 to 300,000
pages.

Figure8 shows theresultsfrom this experiment. The
horizontal axis correspondsto the resourcesizeandthe
vertical axis shows the ChangeRatio at the given re-
sourcesize. Theoraclepolicy is the onethatcanmag-
ically download only the changed pages. We show its
performancefor comparison purposes. Note that the
ChangeRatioof theoraclepolicy goesbelow 1 for ¼ÍÌ� 'A'C?E'�'�' . This is becausein eachdownloadcycle, only
about � '�'C?E'�'A' pageschanged and if our resource size
is larger than � '�'C?E'�'A' , theoraclepolicy startsto down-
load unchangedpages.For mostof resource sizes,the
greedy policy shows muchbetterperformancethanthe
round-robin policy.

The graph confirms our earlier discussion (Sec-
tion 3.5): When the resourcesize is large, the perfor-
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policiesover time

manceof all policiesbecome similar, becauseall poli-
cies download every page. When the resource size is
toosmall,theperformanceof thegreedy policy degrades.
Thisdegradationstartsat ¼�±ÎG 'C?E'�'�' .

To study the impact of the subsetsamplingpolicy,
we divided sites into small subsetsandsampledpages
only from one subsetin each download cycle when¼¾±ÏG '@?"'�'A' . The sizeof eachsubsetwasselectedso
that we can download about �\L = of the pagesin the
subsetin eachdownload cycle. For example, whenwe
have � 'C?E'�'A' downloadresources,eachsubsethadaboutQ�'@?"'A'�'

pages. We selected�SL = becauseabout �SL = of
thesitesin our datasetbelongedto theright peakof the
V-shaped distribution (Figure 5). The result from this
experiment is shown in Figure8. From the graph, we
canseethat thesubsetsamplingpolicy improvestheef-
fectivenessof the greedy policy whenthe resource size
is small. For instance,when ¼¾	½a ?"'A'�' the Change-
Ratioimprovesfrom

' 143�¹ to
' 1 L > whenweusedthesub-

setsamplingpolicy.

4.5 Long-term performance of the frequency policy

The resultsin Section4.2 showed that the performance
of the greedy policy is significantly better than the
frequency-basedpolicy in a shortterm. In this section,
we study the long-term performanceof the frequency-
basedpolicy andcompare it to thegreedy policy.

Towards this goal, we ran the frequency and the
greedy policiesfor longerdownloadcycles,by assuming
thattheobservedchangehistoryof thepagesrepeatsfor-



ever. For example, if we detectedchangesfrom a page
in the 2nd and 5th cycles, we assumedthat we detect
changes in 7th, 10th, 12th, 15th cycles, etc. Figure10
shows the results. The horizontal axis correspondsto a
downloadcycle,andthevertical axisshowstheChange-
Ratioat thegiven downloadcycle. Thedashedline is the
resultof the greedypolicy andthe solid line with wide
fluctuationis theresultof thefrequency-basedpolicy.

The wide fluctuation in the frequency-basedpolicy
is mainly because it periodically downloadspagesthat
rarelychange. Evenif apagehasneverchanged,wecan-
not besurethatits changefrequency is zero,sowe have
to periodically go andcheckthe pagefor change. The
dipsin thegraphcorrespondto thepointswhenthepol-
icy downloadedinfrequently changing pages.Note that
the interval betweenthesedips increasessteadilyover
time. This is because as we accumulate more change
historydata,wecanbemoreconfident thatthepagedoes
notchange,andthusneedto checkthepagelessoften.

From the graph, we can clearly seethat the perfor-
manceof the frequency-basedpolicy improvessteadily
over time. Its performance is significantly lowerthanthe
greedy policy in the beginning, but from around 100th
download cycle, it starts to show better performance.
Therefore, in the long run, the frequency policy canbe
better than the greedy policy However, keep in mind
that 100 download cyclesis a long periodof time. Be-
causewe downloadedpagesonceevery month, 100cy-
clesroughly correspondto 10years!

4.6 Adaptive policy

We now study the impact of the
�

and � values(in-
troduced in Figure3) on the performance of the adap-
tive policy. To studytheir impact,we ran the adaptive-
samplingpolicy for various

�
and � values.Figures11

and12 show the result. Figure11 shows the Change-
Ratioof theadaptivepolicy for various

�
values(thehor-

izontalaxis)when �·	 ' 1 > . Fromthegraph, we cansee
thattheperformancedecreasesas

�
increases.(Thereare

small fluctuations,but we believe they areexperimental
variations.) This result is expectedbecausewhen

�
is

small,we try to re-estimatej � valuesaftersmallnumber
of samples,andthusmakeadownloaddecisionmorefre-
quently with moreaccuratej�� values. From the figure,
we can seethat the performance decreaseis relatively
smalluntil

� 	�� ' .
Figure12 shows the ChangeRatio for various � val-

ues(the horizontal axis). From the graph, we cansee
that the confidenceinterval doesnot affect the perfor-
manceof the policy significantly. We could not detect
any meaningful differencein ChangeRatio for most of� values. Onething to noteis that the performance for� 	Ð� is worsethanothers(

� 	¿a ? � ' ) when � is small
( �If ' 143�a ). This is becausewhen � is smalland

� 	¿� ,
thepolicy startedto pick (or discard)asitefor download
afterit tookonly 2 samples:Becauseit selectedasitefor
download (or discard)too aggressively andtoo early, it
often madewrong decisions.In othercases(

� 	Ïa or� ' , or � is large), theseearlydecisionsdid not happen,
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becausethepolicy hadto sample5 or more pages when� 	×a or
� 	¾� ' , or becauseit madea download (or

discard)decisionconservatively when � is large.
Basedon theresults,we believe

� 	�� ' and �Ø� ' 1 >
aregood parametersto usefor a scenariosimilar to our
Webdata.

4.7 How greedy is Greedy?

In Section3.6 we argued that the Greedypolicy will
eventually download all the pageswithin a Web site
provided that thosepageswill changeat somepoint of
time. In this experimentwe tried to evaluatehow well
theGreedypolicy performsin this respectgivenour real
data.More specificallywe study1) after Ô downloadcy-
cles,what fraction of changed pagesthe Greedypolicy
manages to visit at leastonce? and 2) how often the
Greedypolicy downloadsapageif thepagechanges,say,
onceevery fivecycles?

To answerthefirst question, we definea new metric
Faireness(i), asfollows:

no. of changedandvisitedpagesupto Ô th cycle
no. of total changed pages up to Ô th cycle

For example, if a ' pages have changedsincethebegin-
ning, andwe have revisited ¹ ' of themso far, the fair-
nessvalue is ¹ '/b a ' 	 ' 1 Q . The intuition behind this
metric is that a good download policy shouldrevisit all
changed pagesat somepoint, andprevent starvationof
revisits to somechanged pages. Measuring fairnessis
particularly important for the Greedypolicy, because it
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mayallocateall its resourcesonly to thesiteswith many
changedpagesdueto its greedynature.

Using our collection of real web data we ran the
Greedypolicy usingthesameparametersof Section4.2,
andplottedits fairnessgraphin Figure13. In this graph
the horizontal axis is the download cycle andthe verti-
cal axis represents the fairnessvalueat thegivendown-
load cycle. From this graph we canseethat fairnessis
steadilyincreasingovertime,reaching almost

' 1 L after a
downloadcycles. That is, only after a downloadcycles
theGreedypolicy havemanagedto visit L '/= of thetotal
changedpagesin ourdataset.2

Another interestingissueto study is how well the
Greedypolicy allocatesits download resources to the
pagesof different change frequencies. Desirably, the
Greedypolicy shouldallocatemoreof its resourcesto
thepagesthatarechanging moreoften,in anattemptto
detectmorechanges. To studythis issue,wegroupedthe
pagesin our datasetaccording to the number of times
they have changed during 5 download cycles, and for
eachgroupwemeasuredhow many timesthepageswere
visitedonaverage duringthefive downloadcycles.This
resultis shown in Figure14. Thehorizontalaxisshows
thenumber of changesof a group andtheverticalshows
theavearge numberof revisits for thegroup. Fromthis
plot we canclearly seethat the Greedypolicy allocates
download resourcesin a proportional way among the
groups,in thesensethatit is visitingmoreoftenthepages
thatarechanging more often.

4.8 Performance under different distributions

OurpreviousexperimentsshowedthattheGreedypolicy
workswell for therealWebdatathatfollowsaV-shapedj valuedistribution. It wouldbevery interestingthough,
to examine how various policies would behave under
different kinds of distributions. Towards this goal, we
createdsynthetic datacontaining the change history of¹ 'A'C?E'�'�' pages.Thepagesareequallydistributedamong¹ 'A' websites,soevery sitehad1,000 pages.The j val-
uesof thesewebsitesweredesignedto follow a normal
distributionwith mean

' 1[a andstandarddeviation
' 1 ¹ .

Ourmainideais tocomparetheperformanceof all the
policiessimilarly to Section4.2usingthesynthetic data.

2By changed herewe meanthe pagesthat have changedat least
onceduringthe Å download cycles.
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As wewill explainin detailshortly, theresultsfromthese
experimentsconfirmthatthegeneral conclusionsthatwe
observedbeforearestill valid for thenormaldistribution:
While the exact numbersaredifferent,the Greedyand
Adaptive policiesperform very well, andtheFrequency
policy behaves poorly in the beginning but manages to
reachasimilarperformance to Greedyafteracertainpe-
riod of time.

In Figure 15, we show the performanceof various
policies under the syntheticdata. For the experiment,
we usedthe sameparameters describedin Section4.2
and downloadedpages for 5 download cycles. Com-
paredto Figure 6, all of algorithms managed to have a
high ChangeRatio value,becauseaveragej valueswere
higher in thesyntheticdata. Again in this case,Greedy
did verywell with anoverall performancereachingupto' 1 LAG . TheAdaptivepolicy alsoperformedwell, showing
similarperformanceto thatof theGreedy. TheProporti-
nal andFrequencypoliciesshowedsimilar performance
to thatof theRoundRobin policy. (Their performance is
slightly worsethanthatof RoundRobin, but webelieveit
is dueto statisticalvariationsof ourexperiments.)

Frequencywasnotableto performwell in theexperi-
mentbecause,again, it ranonly for fivedownloadcycles
anddid not have enough knowledge of the changehis-
tory. To measureits long-term performancefor this new
distribution, we ran a longer experiment and observed
that1) Frequency improvedits performancequickly over
timeandshowedsimilarperformanceto Greedyafter10
download cycles, but 2) the final performanceof Fre-
quency was about the sameas Greedyat around 0.82
(previously it wasbetterthanGreedy). We believe this
resultis becausetheavearage j valueis high andall of
the policiesshow relatively high ChangeRatio from the
beginning.With highinitial performance,Frequencycan
achieve only minor improvement, so it could reachits
highest performancequickly, but the improvementwas
notverysignificant.

5 Related work
References [7, 9] study how a crawler should down-
load pagesto maintainits index “up-to-date.” Assum-
ing that the crawler knows the exact change frequen-
cies of pages,the references presentan optimal algo-
rithm. As we learned from ourexperiments,thischange-
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Figure15: Comparisonof various policiesundera nor-
maldistribution hÙ� ' 1[a ?E' 1 ¹A� of j values.

frequency-basedalgorithmperformsrelatively well once
it collectsa large amount of historydata.However, his-
tory collection incurs significantoverhead, and until it
collectsenoughdata,thealgorithm performspoorly. Our
sampling-basedpoliciesdonotneedto trackany change
history, and it shows significant improvementwithout
any historydata.Reference[11] proposesanotherdown-
load algorithm basedon linear programming. The al-
gorithm shows promisingresults,but becausealgorithm
becomes more complex over time, the authors report
that the algorithm hasto periodically “reset” and“start
from scratch;”Thealgorithm takes(practically)infinite
amount of time to finish aftera certainnumberof down-
loadcycles.In contrast, thecomplexity of oursampling-
basedalgorithmsstaythesameover time.

A lot of work hasbeendone to maintainthe consis-
tency of replicateddata[3, 1, 10, 14, 15]. Thisworkstud-
ies thetradeoff betweendataconsistency andread/write
performance.In mostof theexisting work, however, re-
searchershaveassumedapushmodel, wherethesources
notify the replicateddataof the updates. For example,
Olstonet al. [16] proposeda new architecture in which
datasourcescannotify cachesof important changes. In
many contexts,particularlyfor theWeb,thispushmodel
is not applicable, becausedatasourcesoften do not in-
form othersof their changes.

Sampling is apopular techniquethathasbeenusedin
multipledisciplinesfor variousoptimizations[12, 21, 20,
6]. The contribution of this paperis to apply sampling
techniquesto thecontext of changedetection,andstudy
a variety of issuesarisingin this context.

Themulti-armedbandit problemis well known in the
statisticsand AI community. The problem is to iden-
tify theslot machinewith thehighest chanceof winning
through exploration and exploitation. The problem is
proven to be NP-hard[4], andpeople have proposeda
rangeof approximation algorithms [2]. The settingof
themulti-armedbandit problemis slightly different from
ours,becausebandit-problem assumesthat theusercan
play thebestslot machine infinitely. In contrast,we can
downloadonly alimited numberof pagesfrom eachdata
source,so we needto find the top i = sources,not just
the top source. This differencemakesthe policiestake
quitedifferentforms.

6 Conclusion and future work
In this paper, we studiedhow we can detectchanged
data items effectively using sampling. We proposed
threesampling-basedpolicies,greedy, proportional and
adaptive, and evaluated their performance analytically
and experimentally. We also compared the sampling-
basedpolicies to other existing policies. Our experi-
mentsshowedthat thegreedy policy is easyandsimple
to implement andshows oneof thebestperformancein
many scenarios. Given its simplicity andperformance,
we believe that the greedypolicy is good for practical
systems.Its complexity is similar to thewidely-popular
round-robin policy, while its performanceis closeto (or
even betterthan)the frequency-basedpolicy. Also, we
learnedthatthefrequency-basedpolicy is notveryeffec-
tive in certaincases,becauseit takesa long time to es-
timatethechange frequenciesof pages. We now briefly
discussa few avenuesof future work.� If we want to maximize performance, we may

want to combine a sampling-basedpolicy with the
change-frequency-basedpolicy. That is, we start
with a sampling-basedpolicy in thebeginning, and
once we collect enough change history data, we
start using the frequency-basedpolicy. When we
shouldstartthis transition? What canwe do if the
change frequency itself maychange over time?� In this paper, we assumedthat we samplea few
pagesfrom eachWebsiteor eachdatasource. But
thereis no inherentreasonto sampleat thelevel of
a site. What if we samplea few pagesfrom each
directory? What if we group Web pagesbasedon
their contents and samplea few pages from each
group?Wouldwe getbetterperformance?
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A Rough sketch of the proofs for various
theorems

Theorem 1 We samplethe samenumber of random
pages from each data source and allocate remaining
download resourcesbasedon the samplingresults. In
this scenario,the greedypolicy is expectedto give the
highest ChangeRatioout of all sampling-basedpolicies.�
Proof We use Ú � to representthe number of changed
itemsin thesamplesfrom sourcek � . Without losinggen-
erality, we assumeÚ T is thehighestand Ú O is thesecond
highestandsoon.Weassumethatwedownload ¼ � items
from source k � andthetotal of ¼ itemsfrom all sources
(i.e., � � ¼ � 	&¼ ). We assumeeachdatasourcehas h
dataitems.

Whenwe takerandom samplesanddetectÚ � changed
items from � samples,we expect � 'A' �<Û -Ü = items ink � have changed. Therefore, we expect to detect Û -Ü ¼ �
changesfrom k�� whenwe download ¼�� itemsfrom kR� .
Thenthetotalnumberof detectedchangesis expected to
be 
 � Ú��� ¼<� ? where 
 � ¼c�R	`¼
Ourgoalis to maximizetheabovevalue.Fromtheequa-
tion, it is easyto seethat the formula takes its maxi-
mum value when we assign h to ¼ � for low Ô values
( Ô²	Í� ? G ? 1\1d1 ), becauseÚ � values arethehighestfor lowÔ ’s. Thatis,wehavetostartdownloadingdataitemsfrom
thesourceswith themostchangedsamples. e
Theorem 2 The optimal sample size, � , under the
greedypolicy is approximately�<�B� h�i�m;�qj n �Q �Soj p :�ojK� �
Proof To help our derivation, we first assumean ora-
cle greedypolicy, which canmagically identify thesites
with high j valuesandcandirectlydownloadpagesfrom
thosesiteswithout any sampling. We use Ý , �qjK�)� to de-
notetheprobability that theoraclegreedy policy down-
loadsa site kP� whenits j valueis j_� . By the definition
of theoraclegreedy policy, Ý , �qj_�Þ	�� when jßÌÎj n andÝ , �qj_�à	 ' when já±âjKn . We show thegraphof Ý , �qj_� as
a dashedline in Figure 16.

Weusethe Ý�ã_�qjK��� to representtheprobability thatour
greedy policy downloadsa site k$� when its j value isj � . We show its graph asa solid line in Figure16. Be-
causethe greedy policy sometimesmakeswrong deci-
sions,thegraph Ý ã �
jK� is not a stepfunction like Ý , �
jK� .
It approaches

'
as j decreases,but when j is closetoj/n , Ý ã �
jK� is larger than0 even if jØ±�j@n becausesome

of thesitesaremistakenlydownloaded.Similarly, Ý ã �qj_�
approaches� as j increases,but when j is closeto j n ,Ý�ãK�
jK� is smallerthan1 evenif jäÌ�j n . As we increase
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Figure16: Probability Ý , �qj_� and Ý�ã_�qj_�
thesamplesize � , thegraphof ÝÞã_�qj_� will becomesimilar
to thatof Ý , �
jK� , becausethegreedy policy makesmore
accuratedownloaddecisionwith largersamples.

We now approximatethe function Ý²ã_�
jK� by a piece-
wiselinearfunction ÝàîK�
jK� shown asadottedline in Fig-
ure 16. The general form of Ý¯î_�qj_� canbe represented
asÝ î �
jK�$	ï68 9 ' for jáðòñ '@? j n :äóSôTOEõ �
jJ:öj/n¨�RZ TO for jáðò�qjKn�:äó ? j/n�ZÙó��� for jáðòñ jKnPZÙó ? �dô

(1)

andweneedcompute ó to find theapproximation. Based
on theresultof Lemma1 (which is given later),we will
use � b � � astheapproximate ó value.

We now compute the expected performanceof the
greedy policy. Underthegreedypolicy, we download �
samplepagesfrom every site. Therefore, the expected
number of changes that we detectduring samplingis÷ ��oj , where

÷
is thetotalnumberof sitesthatwemain-

tain and oj is theaveragej valuefor overall sites. Once
thegreedypolicy decidesto downloadmore pagesfrom
site k�� , the expectednumber of changesthat we detect
from kR� is �
hÁ:g�¸�Vj/� . (Remember that we downloadh¾:À� morepagesfrom k;� , becausewe do not down-
load the sampledpages again.) Becausethe site k$� is
downloadedwith theprobability Ý ã �qj � � underthegreedy
policy, thetotal numberof changesthatwe expectto de-
tectduring actualdownloadis ø TU Ý ã �qj_���
h³:*�¸�¨jKm;�
jK� Ñ j .
Therefore, the total number of changesthat we detect
bothfrom sampling andfrom actualdownloadis�
hX:·�S�lù TU Ý ã �qj_�Vj_m;�qj_� Ñ júZ ÷ ��oj���
hû:·�¸� ù TU Ý�îK�
jK�¨jKm;�
jK� Ñ jYZ ÷ ��oj
Assuming m;�
jK�*�ûm;�qj n � for jâðB�qj n :Îó ? j n Z`ó�� , and
usingtheanalyticalform of Ý�îK�qj_� in Equation1, wecan



computetheabove integral,andtheresultis�
hû:·�¸� ÷ýüàm;�qj/n¨�Q � Z¿ojKp�þÙZ ÷ ��oj
Our goal is to find the � valuethatmaximizestheabove
formula. It is straightforwardto show thattheabove for-
mulatakesits maximumwhen�<	 � h�i�m;�qj n �Q �Soj p :�ojK� e
Lemma 1 The ó valuefor Equation 1 can be approxi-
matedas � b � � . �
Proof From Figure 16, we seethat ó is a valuewhereÝ�ãK�
j n Z�ó�� becomescloseto � . For thisproof, weassume
thatwe pick the ó value suchthatÝRã_�qj n ZØó��$	 ' 1 > a (2)

We now try to approximate Ý ã �
j � � , the probability
that we download morepagesfrom site k � when its j
valueis j_� .

Thesite kP� is downloadedwhenits estimatedjª� value
(denoted as ÿj@� ) is greaterthan j n . That is, Ý�ã_�qjK�0�ò	Ýúi � ÿjK�ßÌÏj n � . To estimatethe jC� value,we use � b � ,
where � is the number of changed pagesin the sam-
ple and � is the samplesize. That is, ÿjl�*	�� b � . Be-
causewe take � randomsamplesfrom kà� where � 'A' j_� =
of the pages changed, the random variable � follows
a binomial distribution with a successrate jª� , and we
canapproximate ÿj � 	�� b � by the normal distribution
with meanjC� andthestandarddeviation

� jK�"�#��:öjK�)� b � .
Whenwe do not know jl� value,the standarddeviation� j/�E�¨��:äj/�)� b � is often approximatedby

TO�� Ü [17], so
we may assumethat ÿjC� follows the normal distributionhØ�
j/� ? TO�� Ü � .When ÿjK� follows this normal distribution, theproba-
bility Ýúi � ÿjK�*ÌÐj n � is

' 1 > a when j n 	XjK�$:g��1 Q a TO�� � .
Thatis, Ý�ã_�qjK�)�à	 ' 1 > a when j_��	 j n Z ��1 Q aG � � (3)

By comparingEquations 2 and3, we canseethatóY	 ��1 Q aG � � � �� � e
Theorem 3 Wheneverypagechangesat somepointsof
time, everypage is eventually downloaded. �
Proof Theproof is straightforward. Let usselecta ran-
dom pagethat belongs to site k$� . Becauseevery page
changes,thereexistsa time � whereall pagesin k$� have
changed. Then, in thedownloadcycleafter � , thesite k��
will bedownloadedunder thegreedy policy, becauseall
samplepagesin kR� havechanged. e


